The optimum coating composition of alkali Fe powder welding rods was designed by orthogonal experiment with mix rates. A new kind of effective RE-Fe powder welding rod was prepared which could be used at the condition...The optimum coating composition of alkali Fe powder welding rods was designed by orthogonal experiment with mix rates. A new kind of effective RE-Fe powder welding rod was prepared which could be used at the condition of direct and indirect current. The arc characteristics and stabilities of effective Fe powder welding rods containing RE were analyzed by HANNOVER analyzer. The efficiency of Fe powder welding rods was tested by weighting method. It was found that the stability of Fe powder welding rods was improved when it was added with rare earths. The results of impact experiment at low temperatures and SEM analysis on impact break showed that the grain was refined, the welding joint was cleaned, and the mechanical properties of joint was enhanced with proper RE content. It was provided with good processing property for this effective RE-Fe powder welding rod, and its efficiency could arrive at 180%.展开更多
High-entropy materials(HEMs)have better mechanical,thermal,and electrical properties than traditional materials due to their special"high entropy effect".They can also adjust the performance of high entropy ...High-entropy materials(HEMs)have better mechanical,thermal,and electrical properties than traditional materials due to their special"high entropy effect".They can also adjust the performance of high entropy ceramics by adjusting the proportion of raw materials,and have broad application prospects in many fields.This article provides a review of the high entropy effect,preparation methods,and main applications of high entropy ceramic materials,especially exploring relevant research on high entropy perovskite ceramics.It is expected to provide reference for the promotion of scientific research and the development of further large-scale applications of high-entropy ceramic materials.展开更多
Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components we...Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components were studied respectively such as the macroscopic properties, microscopic properties, and high-temperature properties the behavior and effect in the sintering were mastered. Then based on the new ore-proportioning idea of iron ores sintering characteristics complementary, the principles on the effective use of PB powder were discussed, and was fur ther validated through the sintering pot test and industrial production. The results show that PB powder is composed of three kinds of iron ore, and the sintering characteristics of different iron ores are obviously discrepant. With the ore-proportioning optimization based on the iron ores sintering characteristics complementary, the proportion of PB iron ore powder can be increased to more than 45 %.展开更多
The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstruc...The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect.展开更多
The code for calculating the crown effect rate of hot strip steel Was developed using the effect function method. The effect of the initial crown on the crown of the product in hot strip rolling was investigated. The ...The code for calculating the crown effect rate of hot strip steel Was developed using the effect function method. The effect of the initial crown on the crown of the product in hot strip rolling was investigated. The coefficients of a polynomial of degree six for calculating the base value of initial crown effect rate in 4-high mill were determined and the compensation factors of per unit width rolling force, bending force, work roll crown and draft on the initial crown effect rate were given. The difference between the calculation result by established model and theoretical value obtained by effect function method was 4.88 μm when the strip width was 1.85 m.展开更多
Due to their low cost,flexibility,and convenience for long distance data transfer,plastic scintillation fibers (PSF) have been increasingly used in building detectors or sensors for detecting various radiations and im...Due to their low cost,flexibility,and convenience for long distance data transfer,plastic scintillation fibers (PSF) have been increasingly used in building detectors or sensors for detecting various radiations and imaging. In this paper,GEANT4 Monte Carlo simulation tool was used to obtain some radiation effects of PSF under high-energy neutron irradiation. BCF-20,a plastic fiber material,produced by Saint-Gobain,was used in the simulation. The fiber consists of a core scintillating material of polystyrene and an acrylic outer cladding. Incident neutrons produce energy deposition in fiber through neutron induced recoil proton events. The relationships between energy deposition efficiency and fiber length,fiber radius and incident neutron energy are presented. The variation with those parameters and parameter selection are also analyzed.展开更多
In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigati...In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model.展开更多
The powder X-ray diffraction patterns of LaFell.sSil.5 compounds annealed at different high temperatures from 1323 K (5 h) to 1623 K (2 h) show that a large amount of 1:13 phase begins to form in LaFell.sSiL5 com...The powder X-ray diffraction patterns of LaFell.sSil.5 compounds annealed at different high temperatures from 1323 K (5 h) to 1623 K (2 h) show that a large amount of 1:13 phase begins to form in LaFell.sSiL5 compound annealed at 1423 K (5 h). In the temperature range from 1423 to 1523 K, ^-Fe and LaFeSi phases rapidly decrease to form 1:13 phase. LaFeSi phase is rarely observed, and the most amount of 1:13 phase is obtained in the compound annealed at 1523 K (5 h). With the annealing temperature increasing to 1573 and 1623 K, LaFeSi is detected again in the LaFell.sSil.s compound. According to the results of annealing at different high-temperatures, the Lal-xCexFelt.sSit.5 compounds are annealed at high temperatures of 1373 K (2 h) + 1523 K (5 h). The main phase is NaZn13-type phase, and the impurity is a small amount of et-Fe in Lal-xCexFexx.sSil.5 compounds with 0 〈 x 〈 0.35, and there is a large amount of CeaFe17 phase in Lao.sCeo.sFela.sSil.s. It indicates that the substitution of cerium atoms for La in LaFelLsSil.5 compounds has limit. At the same time, the substitution of Ce for La has large effect on magnetocaloric properties. With increasing Ce content from x = 0 to x = 0.35, the Curie temperature decreases linearly from 196 to 168 K, the magnetic entropy change increases from 16.5 to 57.3 J-kg-kK-1 in a low magnetic field change of 0-2 T, and the thermal hysteresis also increases from 3 K to 8 K.展开更多
Hyperthermia effects (39-44 ℃) induced by pulsed high-intensity focused ultrasound (HIFU) have been regarded as a promising therapeutic tool for boosting immune responses or enhancing drug delivery into a solid t...Hyperthermia effects (39-44 ℃) induced by pulsed high-intensity focused ultrasound (HIFU) have been regarded as a promising therapeutic tool for boosting immune responses or enhancing drug delivery into a solid tumor. However, previous studies also reported that the cell death occurs when cells are maintained at 43 ℃ for more than 20 minutes. The aim of this study is to investigate thermal responses inside in vivo rabbit auricular veins exposed to pulsed HIFU (1.17 MHz, 5300 W/cm2, with relatively low-duty ratios (0.2%-4.3%). The results show that: (1) with constant pulse repetition frequency (PRF) (e.g., 1 Hz), the thermal responses inside the vessel will increase with the increasing duty ratio; (2) a temperature elevation to 43 ℃ can be identified at the duty ratio of 4.3%; (3) with constant duty ratios, the change of PRF will not significantly affect the temperature measurement in the vessel; (4) as the duty ratios lower than 4.3%, the presence of microbubbles will not significantly enhance the thermal responses in the vessel, but will facilitate HIFU-induced inertial cavitation events.展开更多
Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the densi...Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the density, longitudinal wave velocity, peak strength, average modulus and secant modulus of sandstone decrease with the increase of temperature, however, peak strain increases gradually. With the increase of ratio of height to diameter, peak strength of sandstone decreases, which has an obvious size effect. A new theoretical model of size effect of sandstone material considering the influence of temperature is put forward, and with the increase of temperature, the size effect is more apparent. The threshold decreases gradually with the increase of temperature, and the deviations of the experimental values and the theoretical values are between 0.44% and 6.06%, which shows quite a credibility of the theoretical model.展开更多
A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of ...A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of electric field, current density, and temperature of the device, a detailed investigation on the damage process and mechanism induced by high-power microwaves (HPM) is performed. The results indicate that the temperature elevation occurs in the negative half-period and the temperature drop process is in the positive half-period under the HPM injection from the output port. The damage point is located near the edge of the base-emitter junction of T2, while with the input injection it exists between the base and the emitter of T2. Comparing these two kinds of injection, the input injection is more likely to damage the device than the output injection. The dependences of the damage energy threshold and the damage power threshold causing the device failure on the pulse-width are obtained, and the formulas obtained have the same form as the experimental equations, which demonstrates that more power is required to destroy the device if the pulse-width is shorter. Furthermore, the simulation result in this paper has a good coincidence with the experimental result.展开更多
Female Wister rats aged 8 weeks were randomly divided into sham operation group, ovariectomized (OVX) control group, and 20VX groups fed with soy isoflavone crude extract supplementation. The rats had free access to...Female Wister rats aged 8 weeks were randomly divided into sham operation group, ovariectomized (OVX) control group, and 20VX groups fed with soy isoflavone crude extract supplementation. The rats had free access to high fat diet and water for 9 weeks. No significant difference was found in body weight (BW), total abdominal fat, food intake and food utilization rate between OVX control group and 20VX groups. However, the fasting blood glucose and blood lipid levels were significantly higher in 20VX groups than in OVX control group (P〈0.05). Intraperitoneal glucose tolerance test (IGTI") showed that the area under AUC was smaller in 20VX groups than in OVX control group (P〈0.05). These findings showed that soy isoflavone crude extract supplementation can improve glucose tolerance and prevent high fat diet-induced insulin resistance in ovariectomized rats.展开更多
This paper studies surface effects on the mechanical behavior of nanoporous materials under high strains with an improved anisotropic Kelvin model. The stress-strain relations are derived by the theories of Euler-Bern...This paper studies surface effects on the mechanical behavior of nanoporous materials under high strains with an improved anisotropic Kelvin model. The stress-strain relations are derived by the theories of Euler-Bernoulli beam and surface elasticity. Mean- while, the influence of strut (or ligament) size on the mechanical properties of nanoporous materials is discussed, which becomes a key factor with consideration of the residual sur- face stress and the surface elasticity. The results show that the decrease in the strut diameter and the increase in the residual surface stress or the surface elasticity can both lead to an increase in the carrying capacity of nanoporous materials. F^lrthermore, me- chanical behaviors of anisotropic nanoporous materials in different directions (the rise direction and the transverse direction) are investigated. The results indicate that the sur- face effects in the transverse direction are more obvious than those in the rise direction for anisotropic nanoporous materials. In addition, the present results can be reduced to the cases of conventional foams as the strut size increases to micron-scale, which confirms validity of the model to a certain extent.展开更多
Ni54Mn25Ga21 alloy was prepared to investigate the microstructure, martensitic transformation and high-temperature shape-memory effect. Ni54Mn25Ga21 alloy exhibits single phase of non-modulated martensite with tetrago...Ni54Mn25Ga21 alloy was prepared to investigate the microstructure, martensitic transformation and high-temperature shape-memory effect. Ni54Mn25Ga21 alloy exhibits single phase of non-modulated martensite with tetragonal structure at room temperature. Its martensitic start temperature Ms, martensitic finish temperature Mf on cooling, and austenitic start temperature As, austenitic finish temperature Af on heating are 260.2, 237.8, 262.5 and 287.8 ℃, respectively. The compressive strength and strain of Ni54Mn25Ga21 single crystal were measured to be 845 MPa and 20.5%, respectively, with compressive axis along the growth direction of the rods. An excellent shape-memory strain of 6.1%, which is the best performance among high-temperature shape-memory alloys up to the present, is obtained when prestrained to 8%.展开更多
The semiclassical transport equations are used to study the high frequency performance of AlGaAs / GaAs HBTs. Electron velocity overshoot effect and its influence on the cut off frequency characteristics of AlGaAs / G...The semiclassical transport equations are used to study the high frequency performance of AlGaAs / GaAs HBTs. Electron velocity overshoot effect and its influence on the cut off frequency characteristics of AlGaAs / GaAs HBTs with different collector design parameters are analyzed and discussed.展开更多
The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of h...The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics.展开更多
The study assessed the effects of supplementary feeding over 180 consecutive days on iron status of infants and toddlers at six tea plantation in West Java, Indonesia. The design used was a clinical trial: two eohorts...The study assessed the effects of supplementary feeding over 180 consecutive days on iron status of infants and toddlers at six tea plantation in West Java, Indonesia. The design used was a clinical trial: two eohorts (i.e., 12 and 18 months old children) and three treatment groups (i.e., energy + micronutrient, micronutrient alone, and placebo) per cohort. Every day except Sunday, the infants attended day-care centers. Twenty four centers and 136 infants were selected. The infants were screened for weight and length and those meeting the criteria (i.e., <-1 SD of length-for-age, and between -1 and -2 SD of weight-for-length of the NCHS reference) were included. The experimental unit was the day-care centers (DCC), where each DCC was randomly assigned to one of the three treatment. As expected, groups of energy + micronutrient and micronutrient alone of the 12 months cohort experienced a significant upward shift in hemoglobin, ferritin and TS and a downward change in FEP, while the values for the group of placebo remain about the same as at base line. In the first 6 month of treatments, the ANOVA for each iron indicator yielded significant main effects of treatment (P<0.01) and for Hb with (P =0.059) on 12 months cohort. On the other hand, the main effects of treatment on hemoglobin, TS, ferritin and FEP were not significant for the 18 months cohort. In the second 6 month of treatments, the only significant of the treatment effect (P<0.01) was in serum ferritin on 18-month cohort. Under these circumstances, energy has a positive role in improving iron stores. It is likely that the equilibrium of hemoglobin and each iron indicators were reached in 6 months of treatment except ferritin still continued to increase up to 12 month. The effects of treatment on the improvement of iron status was stronger in 12 months than in 18 months展开更多
Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alterna...Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two Zn Se samples with different sizes obtained by physical grinding.The results show that(i) two different-sized Zn Se samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase;(ii) the structural transition pressure of the859-nm Zn Se sample is higher than that of the sample of 478 nm,which indicates the strong scale effect.The pressure induced boundary resistance change is obtained by fitting the impedance spectrum,which shows that the boundary conduction dominates the electrical transport behavior of Zn Se in the whole experimental pressure range.By comparing the impedance spectra of two different-sized Zn Se samples at high pressure,we find that the resistance of the 478-nm Zn Se sample is lower than that of the 859-nm sample,which illustrates that the sample with smaller particle size has more defects which are due to physical grinding.展开更多
文摘The optimum coating composition of alkali Fe powder welding rods was designed by orthogonal experiment with mix rates. A new kind of effective RE-Fe powder welding rod was prepared which could be used at the condition of direct and indirect current. The arc characteristics and stabilities of effective Fe powder welding rods containing RE were analyzed by HANNOVER analyzer. The efficiency of Fe powder welding rods was tested by weighting method. It was found that the stability of Fe powder welding rods was improved when it was added with rare earths. The results of impact experiment at low temperatures and SEM analysis on impact break showed that the grain was refined, the welding joint was cleaned, and the mechanical properties of joint was enhanced with proper RE content. It was provided with good processing property for this effective RE-Fe powder welding rod, and its efficiency could arrive at 180%.
文摘High-entropy materials(HEMs)have better mechanical,thermal,and electrical properties than traditional materials due to their special"high entropy effect".They can also adjust the performance of high entropy ceramics by adjusting the proportion of raw materials,and have broad application prospects in many fields.This article provides a review of the high entropy effect,preparation methods,and main applications of high entropy ceramic materials,especially exploring relevant research on high entropy perovskite ceramics.It is expected to provide reference for the promotion of scientific research and the development of further large-scale applications of high-entropy ceramic materials.
文摘Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components were studied respectively such as the macroscopic properties, microscopic properties, and high-temperature properties the behavior and effect in the sintering were mastered. Then based on the new ore-proportioning idea of iron ores sintering characteristics complementary, the principles on the effective use of PB powder were discussed, and was fur ther validated through the sintering pot test and industrial production. The results show that PB powder is composed of three kinds of iron ore, and the sintering characteristics of different iron ores are obviously discrepant. With the ore-proportioning optimization based on the iron ores sintering characteristics complementary, the proportion of PB iron ore powder can be increased to more than 45 %.
文摘The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect.
基金This study was financially supported by the National Nat-ural Science Foundation of China under grant No.59995440the State Key Development Programming Research under grant No.G2000027208-4the Natural Science Foundar tion of Liaoning Province under grant No.2001101021.
文摘The code for calculating the crown effect rate of hot strip steel Was developed using the effect function method. The effect of the initial crown on the crown of the product in hot strip rolling was investigated. The coefficients of a polynomial of degree six for calculating the base value of initial crown effect rate in 4-high mill were determined and the compensation factors of per unit width rolling force, bending force, work roll crown and draft on the initial crown effect rate were given. The difference between the calculation result by established model and theoretical value obtained by effect function method was 4.88 μm when the strip width was 1.85 m.
基金National Natural Science Foundation (No60602065)
文摘Due to their low cost,flexibility,and convenience for long distance data transfer,plastic scintillation fibers (PSF) have been increasingly used in building detectors or sensors for detecting various radiations and imaging. In this paper,GEANT4 Monte Carlo simulation tool was used to obtain some radiation effects of PSF under high-energy neutron irradiation. BCF-20,a plastic fiber material,produced by Saint-Gobain,was used in the simulation. The fiber consists of a core scintillating material of polystyrene and an acrylic outer cladding. Incident neutrons produce energy deposition in fiber through neutron induced recoil proton events. The relationships between energy deposition efficiency and fiber length,fiber radius and incident neutron energy are presented. The variation with those parameters and parameter selection are also analyzed.
基金supported by the National Basic Research Program of China(Grant No.2014CB339900)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and TechnologyChina Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model.
基金supported by the Key Project of National Natural Science Foundation of China (No. 50731007)the National High-Tech Research and Development Program of China (No. 2007AA03Z440)
文摘The powder X-ray diffraction patterns of LaFell.sSil.5 compounds annealed at different high temperatures from 1323 K (5 h) to 1623 K (2 h) show that a large amount of 1:13 phase begins to form in LaFell.sSiL5 compound annealed at 1423 K (5 h). In the temperature range from 1423 to 1523 K, ^-Fe and LaFeSi phases rapidly decrease to form 1:13 phase. LaFeSi phase is rarely observed, and the most amount of 1:13 phase is obtained in the compound annealed at 1523 K (5 h). With the annealing temperature increasing to 1573 and 1623 K, LaFeSi is detected again in the LaFell.sSil.s compound. According to the results of annealing at different high-temperatures, the Lal-xCexFelt.sSit.5 compounds are annealed at high temperatures of 1373 K (2 h) + 1523 K (5 h). The main phase is NaZn13-type phase, and the impurity is a small amount of et-Fe in Lal-xCexFexx.sSil.5 compounds with 0 〈 x 〈 0.35, and there is a large amount of CeaFe17 phase in Lao.sCeo.sFela.sSil.s. It indicates that the substitution of cerium atoms for La in LaFelLsSil.5 compounds has limit. At the same time, the substitution of Ce for La has large effect on magnetocaloric properties. With increasing Ce content from x = 0 to x = 0.35, the Curie temperature decreases linearly from 196 to 168 K, the magnetic entropy change increases from 16.5 to 57.3 J-kg-kK-1 in a low magnetic field change of 0-2 T, and the thermal hysteresis also increases from 3 K to 8 K.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB707900)the National Natural Science Foundation of China (Grant Nos. 11074123, 10974095, 10904068, and 10204014)+2 种基金the Fundamental Research Funds for the Central Universities of China (Grant Nos. 111602040 and 1095020409)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2011812)the Priority Academic Program Development of Jiangsu Higher Educaton Institutions of China
文摘Hyperthermia effects (39-44 ℃) induced by pulsed high-intensity focused ultrasound (HIFU) have been regarded as a promising therapeutic tool for boosting immune responses or enhancing drug delivery into a solid tumor. However, previous studies also reported that the cell death occurs when cells are maintained at 43 ℃ for more than 20 minutes. The aim of this study is to investigate thermal responses inside in vivo rabbit auricular veins exposed to pulsed HIFU (1.17 MHz, 5300 W/cm2, with relatively low-duty ratios (0.2%-4.3%). The results show that: (1) with constant pulse repetition frequency (PRF) (e.g., 1 Hz), the thermal responses inside the vessel will increase with the increasing duty ratio; (2) a temperature elevation to 43 ℃ can be identified at the duty ratio of 4.3%; (3) with constant duty ratios, the change of PRF will not significantly affect the temperature measurement in the vessel; (4) as the duty ratios lower than 4.3%, the presence of microbubbles will not significantly enhance the thermal responses in the vessel, but will facilitate HIFU-induced inertial cavitation events.
基金Project(2013CB036003)supported by the National Key Basic Research Program of ChinaProjects(51374198,51134001)supported by the National Natural Science Foundation of ChinaProject(CXZZ13_0935)supported by the Jiangsu Province Ordinary College Graduate Research Innovative Program,China
文摘Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the density, longitudinal wave velocity, peak strength, average modulus and secant modulus of sandstone decrease with the increase of temperature, however, peak strain increases gradually. With the increase of ratio of height to diameter, peak strength of sandstone decreases, which has an obvious size effect. A new theoretical model of size effect of sandstone material considering the influence of temperature is put forward, and with the increase of temperature, the size effect is more apparent. The threshold decreases gradually with the increase of temperature, and the deviations of the experimental values and the theoretical values are between 0.44% and 6.06%, which shows quite a credibility of the theoretical model.
文摘A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of electric field, current density, and temperature of the device, a detailed investigation on the damage process and mechanism induced by high-power microwaves (HPM) is performed. The results indicate that the temperature elevation occurs in the negative half-period and the temperature drop process is in the positive half-period under the HPM injection from the output port. The damage point is located near the edge of the base-emitter junction of T2, while with the input injection it exists between the base and the emitter of T2. Comparing these two kinds of injection, the input injection is more likely to damage the device than the output injection. The dependences of the damage energy threshold and the damage power threshold causing the device failure on the pulse-width are obtained, and the formulas obtained have the same form as the experimental equations, which demonstrates that more power is required to destroy the device if the pulse-width is shorter. Furthermore, the simulation result in this paper has a good coincidence with the experimental result.
基金supported by the National Natural Science Foundation of China(30972439)Bureau of Health Foundation,Heilongjiang Province(2006-300),(2012-768)Youth Fund of School of Public Health,HMU
文摘Female Wister rats aged 8 weeks were randomly divided into sham operation group, ovariectomized (OVX) control group, and 20VX groups fed with soy isoflavone crude extract supplementation. The rats had free access to high fat diet and water for 9 weeks. No significant difference was found in body weight (BW), total abdominal fat, food intake and food utilization rate between OVX control group and 20VX groups. However, the fasting blood glucose and blood lipid levels were significantly higher in 20VX groups than in OVX control group (P〈0.05). Intraperitoneal glucose tolerance test (IGTI") showed that the area under AUC was smaller in 20VX groups than in OVX control group (P〈0.05). These findings showed that soy isoflavone crude extract supplementation can improve glucose tolerance and prevent high fat diet-induced insulin resistance in ovariectomized rats.
基金supported by the National Natural Science Foundation of China(Nos.11472025,10932001,and 11272030)
文摘This paper studies surface effects on the mechanical behavior of nanoporous materials under high strains with an improved anisotropic Kelvin model. The stress-strain relations are derived by the theories of Euler-Bernoulli beam and surface elasticity. Mean- while, the influence of strut (or ligament) size on the mechanical properties of nanoporous materials is discussed, which becomes a key factor with consideration of the residual sur- face stress and the surface elasticity. The results show that the decrease in the strut diameter and the increase in the residual surface stress or the surface elasticity can both lead to an increase in the carrying capacity of nanoporous materials. F^lrthermore, me- chanical behaviors of anisotropic nanoporous materials in different directions (the rise direction and the transverse direction) are investigated. The results indicate that the sur- face effects in the transverse direction are more obvious than those in the rise direction for anisotropic nanoporous materials. In addition, the present results can be reduced to the cases of conventional foams as the strut size increases to micron-scale, which confirms validity of the model to a certain extent.
基金Project(50371005) supported by the National Natural Science Foundation of China
文摘Ni54Mn25Ga21 alloy was prepared to investigate the microstructure, martensitic transformation and high-temperature shape-memory effect. Ni54Mn25Ga21 alloy exhibits single phase of non-modulated martensite with tetragonal structure at room temperature. Its martensitic start temperature Ms, martensitic finish temperature Mf on cooling, and austenitic start temperature As, austenitic finish temperature Af on heating are 260.2, 237.8, 262.5 and 287.8 ℃, respectively. The compressive strength and strain of Ni54Mn25Ga21 single crystal were measured to be 845 MPa and 20.5%, respectively, with compressive axis along the growth direction of the rods. An excellent shape-memory strain of 6.1%, which is the best performance among high-temperature shape-memory alloys up to the present, is obtained when prestrained to 8%.
文摘The semiclassical transport equations are used to study the high frequency performance of AlGaAs / GaAs HBTs. Electron velocity overshoot effect and its influence on the cut off frequency characteristics of AlGaAs / GaAs HBTs with different collector design parameters are analyzed and discussed.
基金supported by National Natural Science Foundation of China (Grant No. 50575202)
文摘The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics.
文摘The study assessed the effects of supplementary feeding over 180 consecutive days on iron status of infants and toddlers at six tea plantation in West Java, Indonesia. The design used was a clinical trial: two eohorts (i.e., 12 and 18 months old children) and three treatment groups (i.e., energy + micronutrient, micronutrient alone, and placebo) per cohort. Every day except Sunday, the infants attended day-care centers. Twenty four centers and 136 infants were selected. The infants were screened for weight and length and those meeting the criteria (i.e., <-1 SD of length-for-age, and between -1 and -2 SD of weight-for-length of the NCHS reference) were included. The experimental unit was the day-care centers (DCC), where each DCC was randomly assigned to one of the three treatment. As expected, groups of energy + micronutrient and micronutrient alone of the 12 months cohort experienced a significant upward shift in hemoglobin, ferritin and TS and a downward change in FEP, while the values for the group of placebo remain about the same as at base line. In the first 6 month of treatments, the ANOVA for each iron indicator yielded significant main effects of treatment (P<0.01) and for Hb with (P =0.059) on 12 months cohort. On the other hand, the main effects of treatment on hemoglobin, TS, ferritin and FEP were not significant for the 18 months cohort. In the second 6 month of treatments, the only significant of the treatment effect (P<0.01) was in serum ferritin on 18-month cohort. Under these circumstances, energy has a positive role in improving iron stores. It is likely that the equilibrium of hemoglobin and each iron indicators were reached in 6 months of treatment except ferritin still continued to increase up to 12 month. The effects of treatment on the improvement of iron status was stronger in 12 months than in 18 months
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404133 and 11374121)the Program of Science and Technology Development Plan of Jilin Province,China(Grant No.20140520105JH)
文摘Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two Zn Se samples with different sizes obtained by physical grinding.The results show that(i) two different-sized Zn Se samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase;(ii) the structural transition pressure of the859-nm Zn Se sample is higher than that of the sample of 478 nm,which indicates the strong scale effect.The pressure induced boundary resistance change is obtained by fitting the impedance spectrum,which shows that the boundary conduction dominates the electrical transport behavior of Zn Se in the whole experimental pressure range.By comparing the impedance spectra of two different-sized Zn Se samples at high pressure,we find that the resistance of the 478-nm Zn Se sample is lower than that of the 859-nm sample,which illustrates that the sample with smaller particle size has more defects which are due to physical grinding.