火电机组低负荷运行已成为常态,如何提高机组低负荷运行的热经济性是行业内的重要研究方向。提高给水温度是提高机组部分负荷时循环热效率的重要手段,对3种不同的提高部分负荷给水温度的调节方式进行计算分析,结果表明,通过对部分负荷...火电机组低负荷运行已成为常态,如何提高机组低负荷运行的热经济性是行业内的重要研究方向。提高给水温度是提高机组部分负荷时循环热效率的重要手段,对3种不同的提高部分负荷给水温度的调节方式进行计算分析,结果表明,通过对部分负荷给水温度的优化,可降低机组加权热耗约8.3~22.6 k J/k Wh,经济收益明显。展开更多
提出了一种适用于闪存的瞬态增强的无片外电容低压差线性稳压器(LDO)。该LDO采用了具有超低输出阻抗的缓冲器驱动功率管和高能效基准方法,缓冲器采用并联反馈技术降低输出电阻以增强功率管栅端的摆率。高能效基准电路在静态模式输出...提出了一种适用于闪存的瞬态增强的无片外电容低压差线性稳压器(LDO)。该LDO采用了具有超低输出阻抗的缓冲器驱动功率管和高能效基准方法,缓冲器采用并联反馈技术降低输出电阻以增强功率管栅端的摆率。高能效基准电路在静态模式输出小基准电流以减少静态功耗,而在工作模式提供大的基准电流以增加闭环带宽和功率管栅端的摆率。设计的LDO应用于采用70 nm闪存工艺制造的、工作电压为2~3.6 V和存储容量为64 M的闪存中。测试结果表明,该LDO输出的调制电压为1.8 V,最大输出电流为40 m A,在没有负载的条件下仅消耗8.5μA的静态电流,在满载电流变化时,用于闪存时仅有20 ns响应时间且最大输出电压变化仅为72 m V,满足高速闪存的要求。展开更多
文摘火电机组低负荷运行已成为常态,如何提高机组低负荷运行的热经济性是行业内的重要研究方向。提高给水温度是提高机组部分负荷时循环热效率的重要手段,对3种不同的提高部分负荷给水温度的调节方式进行计算分析,结果表明,通过对部分负荷给水温度的优化,可降低机组加权热耗约8.3~22.6 k J/k Wh,经济收益明显。
文摘提出了一种适用于闪存的瞬态增强的无片外电容低压差线性稳压器(LDO)。该LDO采用了具有超低输出阻抗的缓冲器驱动功率管和高能效基准方法,缓冲器采用并联反馈技术降低输出电阻以增强功率管栅端的摆率。高能效基准电路在静态模式输出小基准电流以减少静态功耗,而在工作模式提供大的基准电流以增加闭环带宽和功率管栅端的摆率。设计的LDO应用于采用70 nm闪存工艺制造的、工作电压为2~3.6 V和存储容量为64 M的闪存中。测试结果表明,该LDO输出的调制电压为1.8 V,最大输出电流为40 m A,在没有负载的条件下仅消耗8.5μA的静态电流,在满载电流变化时,用于闪存时仅有20 ns响应时间且最大输出电压变化仅为72 m V,满足高速闪存的要求。