Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yiel...Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.展开更多
The increasing world population has forced excessive chemical fertilizer and irrigation to complete the global food demand,deteriorating the water quality and nutrient losses.Short-term studies do not compile the evid...The increasing world population has forced excessive chemical fertilizer and irrigation to complete the global food demand,deteriorating the water quality and nutrient losses.Short-term studies do not compile the evidences;therefore,the study aimed to identify the effectiveness of reduced doses of inorganic fertilizer and water-saving practices,hence,a six-year experiment(2015-2020)was conducted in China to address the knowledge gap.The experimental treatments were:farmer accustomed fertilization used as control(525:180:30 kg NPK ha^(-1)),fertilizer decrement(450:150:15 kg NPK ha^(-1)),fertilizer decrement+water-saving irrigation(450:150:15 kg NPK ha^(-1)),application of organic and inorganic fertilizer+water-saving irrigation(375:120:0 kg NPK ha^(-1)+4.5 tones organic fertilizer ha^(-1)),and application of controlled-release fertilizer(80:120:15 kg NPK ha^(-1)).Each treatment was replicated thrice following a randomized complete block design.The results achieved herein showed that control has the highest losses in the six-year study for total nitrogen(225.97 mg L^(-1)),total soluble nitrogen(121.58 mg L^(-1)),nitrate nitrogen(0.93 mg L^(-1)),total phosphorus(0.57 mg L^(-1)),and total soluble phosphorus(0.57 mg L^(-1))respectively.Reduced fertilizer and water application improved crop nutrient uptake,nitrogen concentration was significantly enhanced with organic and inorganic fertilizer+water-saving irrigation,P concentration was increased with fertilizer decrement+water-saving irrigation,and K concentration was improved with fertilizer decrement+water-saving irrigation.Hence,this study concludes that reduced inorganic fertilizer dose combined with water-saving practices is significantly helpful in reducing nutrient leaching losses and improving nutrient uptake and water pollution.Further studies are needed to explore the impacts of reduced fertilization and water-saving irrigation on leaching losses.The benefits at different climatic conditions,soil types,and fertilizer types with application methods are also a research gap.展开更多
Two field experiments were conducted to study the effects of 6-year plastic film mulching on bacterial diversity, organic matter of paddy soil and water use efficiency on different soils with great environmental varia...Two field experiments were conducted to study the effects of 6-year plastic film mulching on bacterial diversity, organic matter of paddy soil and water use efficiency on different soils with great environmental variabilities in Zhejiang Province, China, under non-flooding condition. The experiment started in 2001 at two sites with one rice crop annually. Three treatments included plastic film mulching with no flooding (PM), no plastic film mulching and no flooding (UM), and traditional flooding management (TF). Soil samples were collected and analyzed for bacterial diversity by DGGE and organic matter content, and water use efficiency (WUE) was calculated. The results showed that PM treatment favored the development of a more total bacterial community compared with TF management, the total number of bands was 33.3, 31.7 at tiller stage and heading stage (p < 0.05*). Hence, organic matter content was decreased by 36.7% and 51.4% under PM at two sites. PM also produced similar rice grain yield as TF at Duntou site and Dingqiao site, the average was 7924 kg?ha?1 and 7015 kg?ha?1 for PM and 8150 kg?ha?1 and 6990 kg?ha?1 for TF, respectively. Compared to TF, WUE and irrigation water use efficiency were increased significantly by 70.2% - 80.4% and 273.7% - 1300.0% for PM. It is essential to develop the water-saving agriculture.展开更多
To combat the problem of residual film pollution and ensure the sustainable development of agriculture in oasis areas,a field experiment was carried out in 2019 at the Wuyi Farm Corps Irrigation Center Test Station in...To combat the problem of residual film pollution and ensure the sustainable development of agriculture in oasis areas,a field experiment was carried out in 2019 at the Wuyi Farm Corps Irrigation Center Test Station in Urumqi,Northwest China.Four types of biodegradable mulches,traditional plastic mulchs and a control group(bare land;referred to as CK)were compared,including a total of six different treatments.Effects of mulching on soil water and heat conditions as well as the yield and quality of processing tomatoes under drip irrigation were examined.In addition,a comparative analysis of economic benefits of biodegradable mulches was performed.Principal component analysis and gray correlation analysis were used to evaluate suitable mulching varieties for planting processing tomatoes under drip irrigation.Our results show that,compared with CK,biodegradable mulches and traditional plastic mulch have a similar effect on retaining soil moisture at the seedling stage but significantly increase soil moisture by 0.5%-1.5%and 1.5%-3.0%in the middle and late growth periods(P<0.050),respectively.The difference in the thermal insulation effect between biodegradable mulch and plastic mulch gradually reduces as the crop grows.Compared with plastic mulch,the average soil temperature at 5-20 cm depth under biodegradable mulches is significantly lowered by 2.04°C-3.52°C and 0.52°C-0.88°C(P<0.050)at the seedling stage and the full growth period,respectively,and the water use efficiency,average fruit yield,and production-investment ratio under biodegradable mulches were reduced by 0.89%-6.63%,3.39%-8.69%,and 0.51%-6.33%(P<0.050),respectively.The comprehensive evaluation analysis suggests that the black oxidized biological double-degradation ecological mulch made from eco-benign plastic is the optimal film type under the study condition.Therefore,from the perspective of sustainable development,biodegradable mulch is a competitive alternative to plastic mulch for large-scale tomato production under drip irrigation in the oasis.展开更多
In irrigated agricultural systems,nitrogen(N)and water are the vital resources for sustainability of the crop production in the modern era of climate change.The current study aimed to assess the impact of water and N ...In irrigated agricultural systems,nitrogen(N)and water are the vital resources for sustainability of the crop production in the modern era of climate change.The current study aimed to assess the impact of water and N management on the productivity of irrigated rice cultivars.In the context,a field observation was done at the research farm of Bangladesh Agricultural University,Mymensingh,during dry seasons in consecutive two years(2018–2019 and 2019–2020).The experiments were set up following split-plot design assigning water management in the main plots,nitrogen management in the sub-plots,and the cultivars were approved in the split-split plot with three replications.After two years observation,it was revealed that rice cultivar Binadhan-8 gave the maximum value of leaf area index,number effective tillers hill-1 and grains panicle-1 which lead to the higher grain yield(GY).Substantial relationships were observed among the concentration of N,growth,total dry matter(TDM)and N content,N uptake,N utilization effectiveness,and GY.However,with little exception,the Combined effect of water and N,cultivars and water management were varied significantly for all parameters.Finally,the results of the current study concluded that application of irrigation at 8 days after the disappearance of ponded water and source of 105 kg N ha-1 from PU+Poultry manure are the best management approach for the excellent performance of rice cultivar Binadhan-8.展开更多
Central Asia,located in the hinterland of the Eurasian continent,is characterized with sparse rainfall,frequent droughts and low water use efficiency.Limited water resources have become a key factor restricting the su...Central Asia,located in the hinterland of the Eurasian continent,is characterized with sparse rainfall,frequent droughts and low water use efficiency.Limited water resources have become a key factor restricting the sustainable development of this region.Accurately assessing the efficiency of water resources utilization is the first step to achieve the UN Sustainable Development Goals(SDGs)in Central Asia.However,since the collapse of the Soviet Union,the evalua-tion of water use efficiency is difficult due to low data availability and poor consistency.To fill this gap,this paper developed a Water Use Efficiency dataset(WUE)based on the Moderate Resolution Imaging Spectroradiometer(MODIS)Gross Primary Production(GPP)data and the MODIS evapotranspiration(ET)data.The WUE dataset ranges from 2000 to 2019 with a spatial resolution of 500 m.The agricultural WUE was then extracted based on the Global map of irrigated areas and MODIS land use map.As a complementary,the water use amount per GDP was estimated for each country.The present dataset could reflect changes in water use efficiency of agriculture and other sectors.展开更多
基金research support from the National Key Research and Development Program of China (2016YFD0300110, 2016YFD0300101)the National Basic Research Program of China (2015CB150401)+2 种基金the National Natural Science Foundation of China (31360302)the Science and Technology Program of the Sixth Division of Xinjiang Construction Corps in China (1703)the Agricultural Science and Technology Innovation Program for financial support.
文摘Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.
基金This study received funds from the National Natural Science Foundation of China[41361062]National Natural Science Foundation of China Joint Fund for Regional Innovation and Development[U20A20114]+1 种基金Natural Science Foundation of Ningxia Hui Autonomous Region[2022AAC03449]Station of Observation and Experiment National Agricultural Environment in Yinchuan,Ningxia,China[NAES091AE18].
文摘The increasing world population has forced excessive chemical fertilizer and irrigation to complete the global food demand,deteriorating the water quality and nutrient losses.Short-term studies do not compile the evidences;therefore,the study aimed to identify the effectiveness of reduced doses of inorganic fertilizer and water-saving practices,hence,a six-year experiment(2015-2020)was conducted in China to address the knowledge gap.The experimental treatments were:farmer accustomed fertilization used as control(525:180:30 kg NPK ha^(-1)),fertilizer decrement(450:150:15 kg NPK ha^(-1)),fertilizer decrement+water-saving irrigation(450:150:15 kg NPK ha^(-1)),application of organic and inorganic fertilizer+water-saving irrigation(375:120:0 kg NPK ha^(-1)+4.5 tones organic fertilizer ha^(-1)),and application of controlled-release fertilizer(80:120:15 kg NPK ha^(-1)).Each treatment was replicated thrice following a randomized complete block design.The results achieved herein showed that control has the highest losses in the six-year study for total nitrogen(225.97 mg L^(-1)),total soluble nitrogen(121.58 mg L^(-1)),nitrate nitrogen(0.93 mg L^(-1)),total phosphorus(0.57 mg L^(-1)),and total soluble phosphorus(0.57 mg L^(-1))respectively.Reduced fertilizer and water application improved crop nutrient uptake,nitrogen concentration was significantly enhanced with organic and inorganic fertilizer+water-saving irrigation,P concentration was increased with fertilizer decrement+water-saving irrigation,and K concentration was improved with fertilizer decrement+water-saving irrigation.Hence,this study concludes that reduced inorganic fertilizer dose combined with water-saving practices is significantly helpful in reducing nutrient leaching losses and improving nutrient uptake and water pollution.Further studies are needed to explore the impacts of reduced fertilization and water-saving irrigation on leaching losses.The benefits at different climatic conditions,soil types,and fertilizer types with application methods are also a research gap.
文摘Two field experiments were conducted to study the effects of 6-year plastic film mulching on bacterial diversity, organic matter of paddy soil and water use efficiency on different soils with great environmental variabilities in Zhejiang Province, China, under non-flooding condition. The experiment started in 2001 at two sites with one rice crop annually. Three treatments included plastic film mulching with no flooding (PM), no plastic film mulching and no flooding (UM), and traditional flooding management (TF). Soil samples were collected and analyzed for bacterial diversity by DGGE and organic matter content, and water use efficiency (WUE) was calculated. The results showed that PM treatment favored the development of a more total bacterial community compared with TF management, the total number of bands was 33.3, 31.7 at tiller stage and heading stage (p < 0.05*). Hence, organic matter content was decreased by 36.7% and 51.4% under PM at two sites. PM also produced similar rice grain yield as TF at Duntou site and Dingqiao site, the average was 7924 kg?ha?1 and 7015 kg?ha?1 for PM and 8150 kg?ha?1 and 6990 kg?ha?1 for TF, respectively. Compared to TF, WUE and irrigation water use efficiency were increased significantly by 70.2% - 80.4% and 273.7% - 1300.0% for PM. It is essential to develop the water-saving agriculture.
基金the Scientific and Technological Innovation Team Project in Key Areas(2019CB004)the Water-Saving Irrigation Experiment Project(BTJSSY–201911)of Xinjiang Production and Construction Corps,China。
文摘To combat the problem of residual film pollution and ensure the sustainable development of agriculture in oasis areas,a field experiment was carried out in 2019 at the Wuyi Farm Corps Irrigation Center Test Station in Urumqi,Northwest China.Four types of biodegradable mulches,traditional plastic mulchs and a control group(bare land;referred to as CK)were compared,including a total of six different treatments.Effects of mulching on soil water and heat conditions as well as the yield and quality of processing tomatoes under drip irrigation were examined.In addition,a comparative analysis of economic benefits of biodegradable mulches was performed.Principal component analysis and gray correlation analysis were used to evaluate suitable mulching varieties for planting processing tomatoes under drip irrigation.Our results show that,compared with CK,biodegradable mulches and traditional plastic mulch have a similar effect on retaining soil moisture at the seedling stage but significantly increase soil moisture by 0.5%-1.5%and 1.5%-3.0%in the middle and late growth periods(P<0.050),respectively.The difference in the thermal insulation effect between biodegradable mulch and plastic mulch gradually reduces as the crop grows.Compared with plastic mulch,the average soil temperature at 5-20 cm depth under biodegradable mulches is significantly lowered by 2.04°C-3.52°C and 0.52°C-0.88°C(P<0.050)at the seedling stage and the full growth period,respectively,and the water use efficiency,average fruit yield,and production-investment ratio under biodegradable mulches were reduced by 0.89%-6.63%,3.39%-8.69%,and 0.51%-6.33%(P<0.050),respectively.The comprehensive evaluation analysis suggests that the black oxidized biological double-degradation ecological mulch made from eco-benign plastic is the optimal film type under the study condition.Therefore,from the perspective of sustainable development,biodegradable mulch is a competitive alternative to plastic mulch for large-scale tomato production under drip irrigation in the oasis.
基金Bangladesh Agricultural Research Council(BARC),Bangladesh and the Taif University Researchers Supporting Project No.(TURSP-2020/85),Taif University,Taif,Saudi Arabia.
文摘In irrigated agricultural systems,nitrogen(N)and water are the vital resources for sustainability of the crop production in the modern era of climate change.The current study aimed to assess the impact of water and N management on the productivity of irrigated rice cultivars.In the context,a field observation was done at the research farm of Bangladesh Agricultural University,Mymensingh,during dry seasons in consecutive two years(2018–2019 and 2019–2020).The experiments were set up following split-plot design assigning water management in the main plots,nitrogen management in the sub-plots,and the cultivars were approved in the split-split plot with three replications.After two years observation,it was revealed that rice cultivar Binadhan-8 gave the maximum value of leaf area index,number effective tillers hill-1 and grains panicle-1 which lead to the higher grain yield(GY).Substantial relationships were observed among the concentration of N,growth,total dry matter(TDM)and N content,N uptake,N utilization effectiveness,and GY.However,with little exception,the Combined effect of water and N,cultivars and water management were varied significantly for all parameters.Finally,the results of the current study concluded that application of irrigation at 8 days after the disappearance of ponded water and source of 105 kg N ha-1 from PU+Poultry manure are the best management approach for the excellent performance of rice cultivar Binadhan-8.
基金was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19030204)the Key Research Program of the Chinese Academy of Sciences(ZDRW-ZS-2019-3).
文摘Central Asia,located in the hinterland of the Eurasian continent,is characterized with sparse rainfall,frequent droughts and low water use efficiency.Limited water resources have become a key factor restricting the sustainable development of this region.Accurately assessing the efficiency of water resources utilization is the first step to achieve the UN Sustainable Development Goals(SDGs)in Central Asia.However,since the collapse of the Soviet Union,the evalua-tion of water use efficiency is difficult due to low data availability and poor consistency.To fill this gap,this paper developed a Water Use Efficiency dataset(WUE)based on the Moderate Resolution Imaging Spectroradiometer(MODIS)Gross Primary Production(GPP)data and the MODIS evapotranspiration(ET)data.The WUE dataset ranges from 2000 to 2019 with a spatial resolution of 500 m.The agricultural WUE was then extracted based on the Global map of irrigated areas and MODIS land use map.As a complementary,the water use amount per GDP was estimated for each country.The present dataset could reflect changes in water use efficiency of agriculture and other sectors.