The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are chang...The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are changed and two kinds of methods,i.e.,contrast body doping andδ-doping are used.The samples are analyzed by the Hall measurements at 300 Kand 77 K.The InxGa1-xAs/In0.52Al0.48As 2DEG channel structures with mobilities as high as 10289 cm^2/V·s(300 K)and42040 cm^2/V·s(77 K)are obtained,and the values of carrier concentration(Nc)are 3.465×10^12/cm^2 and 2.502×10^12/cm^2,respectively.The THz response rates of In P-based high electron mobility transistor(HEMT)structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory.The results provide a reference for the research and preparation of In P-based HEMT THz detectors.展开更多
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional el...The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.展开更多
The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and grow...The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.展开更多
InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-D...InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD.展开更多
The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect ene...The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect energy level with respect to conduction band ET, and defect concentration on the transfer and output characteristics of the device are discussed based on hydrodynamic model and Shockley–Read–Hall recombination model.The results indicate that only acceptorlike defects have a significant influence on device operation.Meanwhile, as defect energy level ETshifts away from conduction band, the drain current decreases gradually and finally reaches a saturation value with ETabove 0.5 eV.This can be attributed to the fact that at sufficient deep level, acceptor-type defects could not be ionized any more.Additionally,the drain current and transconductance degrade more severely with larger acceptor concentration.These changes of the electrical characteristics with proton radiation could be accounted for by the electron density reduction in the channel region from induced acceptor-like defects.展开更多
An optimized micro-gated terahertz detector with novel triple resonant antenna is presented.The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared...An optimized micro-gated terahertz detector with novel triple resonant antenna is presented.The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared to the conventional bowtie antenna.In finite-difference-time-domain simulations,we found the performance of the self-mixing GaN/AlGaN high electron mobility transistor detector is mainly dependent on the parameters L gs(the gap between the gate and the source/drain antenna) and L w(the gap between the source and drain antenna).With the improved triple resonant antenna,an optimized micrometer-sized AlGaN/GaN high electron mobility transistor detector can achieve a high responsivity of 9.45×102 V/W at a frequency of 903 GHz at room temperature.展开更多
In this paper,two-dimensional electron gas(2DEG) regions in AlGaN/GaN high electron mobility transistors(HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time.A new electric field p...In this paper,two-dimensional electron gas(2DEG) regions in AlGaN/GaN high electron mobility transistors(HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time.A new electric field peak is introduced along the interface between the AlGaN and GaN buffer by the electric field modulation effect due to partial silicon positive charge.The high electric field near the gate for the complete silicon doping structure is effectively decreased,which makes the surface electric field uniform.The high electric field peak near the drain results from the potential difference between the surface and the depletion regions.Simulated breakdown curves that are the same as the test results are obtained for the first time by introducing an acceptor-like trap into the N-type GaN buffer.The proposed structure with partial silicon doping is better than the structure with complete silicon doping and conventional structures with the electric field plate near the drain.The breakdown voltage is improved from 296 V for the conventional structure to 400 V for the proposed one resulting from the uniform surface electric field.展开更多
We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in A1GaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi-Dir...We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in A1GaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi-Dirac distribution, we calculate the transport properties of the 2DEG in the A1GaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation. Then, the nonequilibrium Fermi-Dirac function is obtained by applying the calculated electron drift velocity and electron temperature. Under random phase approximation (RPA), the electric field driven plas- mon dispersion is investigated. The calculated results indicate that the plasmon frequency is dominated by both the electric field E and the angle between wavevector q and electric field E. Importantly, the plasmon frequency could be tuned by the applied source-drain bias voltage besides the gate voltage (change of the electron density).展开更多
Models for calculating the sheet densities of two-dimensional electron gas (2DEG) induced by spontaneous and piezoelectric polarization in A1GaN/GaN, A1GaN/A1N/GaN, and GaN/A1GaN/GaN heterostructures are provided. T...Models for calculating the sheet densities of two-dimensional electron gas (2DEG) induced by spontaneous and piezoelectric polarization in A1GaN/GaN, A1GaN/A1N/GaN, and GaN/A1GaN/GaN heterostructures are provided. The detailed derivation process of the expression of 2DEG sheet density is given. A longstanding confusion in a very widely cited formula is pointed out and its correct expression is analyzed in detail.展开更多
We simulate the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths using the quasi-two-dimensional (quasi-2D) model. The calculati...We simulate the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths using the quasi-two-dimensional (quasi-2D) model. The calculation results obtained using the modified mobility model are found to accord well with the experimental data. By analyzing the variation of the electron mobility for the two-dimensional electron gas (213EG) with the electric field in the linear region of the AlGaN/AlN/GaN HFET I-V output characteristics, it is found that the polarization Coulomb field scattering still plays an important role in the electron mobility of AlGaN/AlN/GaN HFETs at the higher drain voltage and channel electric field. As drain voltage and channel electric field increase, the 2DEG density reduces and the polarization Coulomb field scattering increases, as a result, the 2DEG electron mobility decreases.展开更多
The structure of In P-based In_xGa_(1-x) As/In0.52Al0.48 As pseudomorphic high electron mobility transistor(PHEMT)was optimized in detail.Effects of growth temperature,growth interruption time,Si δ-doping conditi...The structure of In P-based In_xGa_(1-x) As/In0.52Al0.48 As pseudomorphic high electron mobility transistor(PHEMT)was optimized in detail.Effects of growth temperature,growth interruption time,Si δ-doping condition,channel thickness and In content,and inserted Al As monolayer(ML) on the two-dimensional electron gas(2DEG) performance were investigated carefully.It was found that the use of the inserted Al As monolayer has an enhancement effect on the mobility due to the reduction of interface roughness and the suppression of Si movement.With optimization of the growth parameters,the structures composed of a 10 nm thick In0.75Ga0.25 As channel layer and a 3 nm thick Al As/In0.52Al0.48 As superlattices spacer layer exhibited electron mobilities as high as 12500 cm^2·V-1·s^(-1)(300 K) and 53500 cm^2·V~(-1_·s^(-1)(77 K) and the corresponding sheet carrier concentrations(Ns) of 2.8×10^(12)cm^(-2)and 2.9×1012cm^(-2),respectively.To the best of the authors' knowledge,this is the highest reported room temperature mobility for In P-based HEMTs with a spacer of 3 nm to date.展开更多
AlGaN/AlN/GaN structures are grown by metalorganic vapor phase epitaxy on sapphire substrates. Influences of AlN interlayer thickness, AlGaN barrier thickness, and Al composition on the two-dimensional electron gas(2...AlGaN/AlN/GaN structures are grown by metalorganic vapor phase epitaxy on sapphire substrates. Influences of AlN interlayer thickness, AlGaN barrier thickness, and Al composition on the two-dimensional electron gas(2DEG) performance are investigated. Lowering the V/III ratio and enhancing the reactor pressure at the initial stage of the hightemperature GaN layer growth will prolong the GaN nuclei coalescence process and effectively improve the crystalline quality and the interface morphology, diminishing the interface roughness scattering and improving 2DEG mobility. AlGaN/AlN/GaN structure with 2DEG sheet density of 1.19 × 10^13cm^-2, electron mobility of 2101 cm^2·V^-1·s^-1, and square resistance of 249 Ω is obtained.展开更多
This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojun...This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojunction band diagram of InZnO bilayer was modified by the cation composition to form the two-dimensional electron gas(2DEG)at the interface quantum well,as verified using a metal−insulator−semiconductor(MIS)device.Although the 2DEG indeed contributes to a higher mobility than the monolayer channel,the competition and cooperation between the gate field and the built-in field strongly affect such mobility-boosting effect,originating from the carrier inelastic collision at the heterojunction interface and the gate field-induced suppression of quantum well.Benefited from the proper energy-band engineering,a high mobility of 84.3 cm2·V^(−1)·s^(−1),a decent threshold voltage(V_(th))of−6.5 V,and a steep subthreshold swing(SS)of 0.29 V/dec were obtained in InZnO-based heterojunction TFT.展开更多
Lattice matched InP based InAlAs/InGaAs HEMTs with 120GHz cutoff frequency are reported.These devices demonstrate excellent DC characteristics:the extrinsic transconductance of 600mS/mm,the threshold voltage of -1 ...Lattice matched InP based InAlAs/InGaAs HEMTs with 120GHz cutoff frequency are reported.These devices demonstrate excellent DC characteristics:the extrinsic transconductance of 600mS/mm,the threshold voltage of -1 2V,and the maximum current density of 500mA/mm.展开更多
基金Project supported by the Foundation for Scientific Instrument and Equipment Development,Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant No.61435012)
文摘The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are changed and two kinds of methods,i.e.,contrast body doping andδ-doping are used.The samples are analyzed by the Hall measurements at 300 Kand 77 K.The InxGa1-xAs/In0.52Al0.48As 2DEG channel structures with mobilities as high as 10289 cm^2/V·s(300 K)and42040 cm^2/V·s(77 K)are obtained,and the values of carrier concentration(Nc)are 3.465×10^12/cm^2 and 2.502×10^12/cm^2,respectively.The THz response rates of In P-based high electron mobility transistor(HEMT)structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory.The results provide a reference for the research and preparation of In P-based HEMT THz detectors.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60976070)the Excellent Science and Technology Innovation Program from Beijing Jiaotong University,China
文摘The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.
基金Supported by the National Natural Science Foundation of China under Grant No 61434006
文摘The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.
基金Project(Z132012A001)supported by the Technical Basis Research Program in Science and Industry Bureau of ChinaProject(61201028,60876009)supported by the National Natural Science Foundation of China
文摘InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775191,61404115,61434006,and 11475256)the Development Fund for Outstanding Young Teachers in Zhengzhou University of China(Grant No.1521317004)the Doctoral Student Overseas Study Program of Zhengzhou University,China
文摘The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect energy level with respect to conduction band ET, and defect concentration on the transfer and output characteristics of the device are discussed based on hydrodynamic model and Shockley–Read–Hall recombination model.The results indicate that only acceptorlike defects have a significant influence on device operation.Meanwhile, as defect energy level ETshifts away from conduction band, the drain current decreases gradually and finally reaches a saturation value with ETabove 0.5 eV.This can be attributed to the fact that at sufficient deep level, acceptor-type defects could not be ionized any more.Additionally,the drain current and transconductance degrade more severely with larger acceptor concentration.These changes of the electrical characteristics with proton radiation could be accounted for by the electron density reduction in the channel region from induced acceptor-like defects.
基金Project supported by the National Basic Research Program of China (Grant No. G2009CB929303)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y0BAQ31001)+1 种基金the National Natural Science Foundation of China(Grant Nos. 60871077 and 61107093)the Visiting Professorship for Senior International Scientists of the Chinese Academy of Sciences (Grant No. 2010T2J07)
文摘An optimized micro-gated terahertz detector with novel triple resonant antenna is presented.The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared to the conventional bowtie antenna.In finite-difference-time-domain simulations,we found the performance of the self-mixing GaN/AlGaN high electron mobility transistor detector is mainly dependent on the parameters L gs(the gap between the gate and the source/drain antenna) and L w(the gap between the source and drain antenna).With the improved triple resonant antenna,an optimized micrometer-sized AlGaN/GaN high electron mobility transistor detector can achieve a high responsivity of 9.45×102 V/W at a frequency of 903 GHz at room temperature.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61106076)
文摘In this paper,two-dimensional electron gas(2DEG) regions in AlGaN/GaN high electron mobility transistors(HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time.A new electric field peak is introduced along the interface between the AlGaN and GaN buffer by the electric field modulation effect due to partial silicon positive charge.The high electric field near the gate for the complete silicon doping structure is effectively decreased,which makes the surface electric field uniform.The high electric field peak near the drain results from the potential difference between the surface and the depletion regions.Simulated breakdown curves that are the same as the test results are obtained for the first time by introducing an acceptor-like trap into the N-type GaN buffer.The proposed structure with partial silicon doping is better than the structure with complete silicon doping and conventional structures with the electric field plate near the drain.The breakdown voltage is improved from 296 V for the conventional structure to 400 V for the proposed one resulting from the uniform surface electric field.
基金Project supported by the National Basic Research Program of China(Grant No.2009CB929303)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos.Y0BAQ31001 and KJCX2-EW-705)the National Natural Science Foundation of China(Grant Nos.61271157,61107093,and 10834004)
文摘We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in A1GaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi-Dirac distribution, we calculate the transport properties of the 2DEG in the A1GaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation. Then, the nonequilibrium Fermi-Dirac function is obtained by applying the calculated electron drift velocity and electron temperature. Under random phase approximation (RPA), the electric field driven plas- mon dispersion is investigated. The calculated results indicate that the plasmon frequency is dominated by both the electric field E and the angle between wavevector q and electric field E. Importantly, the plasmon frequency could be tuned by the applied source-drain bias voltage besides the gate voltage (change of the electron density).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61377020,61376089,61223005,and 61176126)the National Science Fund for Distinguished Young Scholars,China(Grant No.60925017)
文摘Models for calculating the sheet densities of two-dimensional electron gas (2DEG) induced by spontaneous and piezoelectric polarization in A1GaN/GaN, A1GaN/A1N/GaN, and GaN/A1GaN/GaN heterostructures are provided. The detailed derivation process of the expression of 2DEG sheet density is given. A longstanding confusion in a very widely cited formula is pointed out and its correct expression is analyzed in detail.
基金supported by the National Natural Science Foundation of China (Grant No. 11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20110131110005)
文摘We simulate the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths using the quasi-two-dimensional (quasi-2D) model. The calculation results obtained using the modified mobility model are found to accord well with the experimental data. By analyzing the variation of the electron mobility for the two-dimensional electron gas (213EG) with the electric field in the linear region of the AlGaN/AlN/GaN HFET I-V output characteristics, it is found that the polarization Coulomb field scattering still plays an important role in the electron mobility of AlGaN/AlN/GaN HFETs at the higher drain voltage and channel electric field. As drain voltage and channel electric field increase, the 2DEG density reduces and the polarization Coulomb field scattering increases, as a result, the 2DEG electron mobility decreases.
基金Project supported by the National Natural Science Foundation of China(Grant No.61434006)
文摘The structure of In P-based In_xGa_(1-x) As/In0.52Al0.48 As pseudomorphic high electron mobility transistor(PHEMT)was optimized in detail.Effects of growth temperature,growth interruption time,Si δ-doping condition,channel thickness and In content,and inserted Al As monolayer(ML) on the two-dimensional electron gas(2DEG) performance were investigated carefully.It was found that the use of the inserted Al As monolayer has an enhancement effect on the mobility due to the reduction of interface roughness and the suppression of Si movement.With optimization of the growth parameters,the structures composed of a 10 nm thick In0.75Ga0.25 As channel layer and a 3 nm thick Al As/In0.52Al0.48 As superlattices spacer layer exhibited electron mobilities as high as 12500 cm^2·V-1·s^(-1)(300 K) and 53500 cm^2·V~(-1_·s^(-1)(77 K) and the corresponding sheet carrier concentrations(Ns) of 2.8×10^(12)cm^(-2)and 2.9×1012cm^(-2),respectively.To the best of the authors' knowledge,this is the highest reported room temperature mobility for In P-based HEMTs with a spacer of 3 nm to date.
基金Project support by the National Natural Science Foundation of China(Grant Nos.61474110,61377020,61376089,61223005,and 61176126)the National Science Fund for Distinguished Young Scholars,China(Grant No.60925017)+1 种基金the One Hundred Person Project of the Chinese Academy of Sciencesthe Basic Research Project of Jiangsu Province,China(Grant No.BK20130362)
文摘AlGaN/AlN/GaN structures are grown by metalorganic vapor phase epitaxy on sapphire substrates. Influences of AlN interlayer thickness, AlGaN barrier thickness, and Al composition on the two-dimensional electron gas(2DEG) performance are investigated. Lowering the V/III ratio and enhancing the reactor pressure at the initial stage of the hightemperature GaN layer growth will prolong the GaN nuclei coalescence process and effectively improve the crystalline quality and the interface morphology, diminishing the interface roughness scattering and improving 2DEG mobility. AlGaN/AlN/GaN structure with 2DEG sheet density of 1.19 × 10^13cm^-2, electron mobility of 2101 cm^2·V^-1·s^-1, and square resistance of 249 Ω is obtained.
基金supported by National Key Research and Development Program(2021YFB3600802)Shenzhen Municipal Scientific Program(JSGG20220831103803007,SGDX20211123145404006)Guangdong Basic and Applied Basic Research Foundation(2022A1515110029)
文摘This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojunction band diagram of InZnO bilayer was modified by the cation composition to form the two-dimensional electron gas(2DEG)at the interface quantum well,as verified using a metal−insulator−semiconductor(MIS)device.Although the 2DEG indeed contributes to a higher mobility than the monolayer channel,the competition and cooperation between the gate field and the built-in field strongly affect such mobility-boosting effect,originating from the carrier inelastic collision at the heterojunction interface and the gate field-induced suppression of quantum well.Benefited from the proper energy-band engineering,a high mobility of 84.3 cm2·V^(−1)·s^(−1),a decent threshold voltage(V_(th))of−6.5 V,and a steep subthreshold swing(SS)of 0.29 V/dec were obtained in InZnO-based heterojunction TFT.
文摘Lattice matched InP based InAlAs/InGaAs HEMTs with 120GHz cutoff frequency are reported.These devices demonstrate excellent DC characteristics:the extrinsic transconductance of 600mS/mm,the threshold voltage of -1 2V,and the maximum current density of 500mA/mm.