期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
Multilevel carbon architecture of subnanoscopic silicon for fast‐charging high‐energy‐density lithium‐ion batteries
1
作者 Meisheng Han Yongbiao Mu +2 位作者 Lei Wei Lin Zeng Tianshou Zhao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期256-268,共13页
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p... Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C. 展开更多
关键词 fast charging high energy densities lithium‐ion batteries multilevel carbon architecture subnanoscopic silicon anode
下载PDF
Surface-engineering of layered LiNi_(0.815)Co_(0.15)Al_(0.035)O_2 cathode material for high-energy and stable Li-ion batteries 被引量:4
2
作者 Yugang Li Haifeng Yu +2 位作者 Yanjie Hu Hao Jiang Chunzhong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期559-564,共6页
Surface engineering is an effective strategy to restrain the generation of rocksalt NiO phase on surface of layered LiNi0.815Co0.15Al0.035O2(NCA) primary nanoparticles, a representative Ni-rich layered oxides cathod... Surface engineering is an effective strategy to restrain the generation of rocksalt NiO phase on surface of layered LiNi0.815Co0.15Al0.035O2(NCA) primary nanoparticles, a representative Ni-rich layered oxides cathode materials. Herein, we demonstrate the kilogram-scale synthesis of few-layer reduced graphene oxide(rGO) conformably coated NCA primary nanoparticles cathode materials by a mechanical wet ball-milling strategy. The lightening rGO coating layer effectively avoids the direct contact of electrolyte and NCA with rapid electrons transfer. As a result, the as-obtained NCA@rGO hybrids with only 1.0 wt% rGO content can deliver a high specific capacity(196 mAh g-1 at 0.2 C) and fast charge/discharge capability(127 mAh g-1 at 5 C), which is much higher than the corresponding NCA nanoparticles(95 mAh g-1 at 5 C). Even after100 cycles at 1 C, 91.7% of initial reversible capacity is still maintained. Furthermore, a prismatic pouch cell(240 mAh) is also successfully assembled with the commercial graphite anode. 展开更多
关键词 Layered materials CATHODE Reduced graphene oxide energy density li-ion batteries
下载PDF
A strategy to achieve high loading and high energy density Li-S batteries 被引量:4
3
作者 Fei Yin Qi Jin +2 位作者 Hong Gao XiTian Zhang ZhiGuo Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期340-346,I0012,共8页
Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3... Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3 D free-standing sulfur cathode scaffold is rationally designed and fabricated by coaxially coating polar Ti_3 C_2 T_x flakes on sulfur-impregnated carbon cloth(Ti_3 C_2 T_x@S/CC) to achieve high loading and high energy density Li-S batteries,in which,the flexible CC substrate with highly porous structure can accommodate large amounts of sulfur and ensure fast electron transfer,while the outer-coated Ti_3 C_2 T_x can serve as a polar and conductive protective layer to further promote the conductivity of the whole electrode,achieve physical blocking and chemical anchoring of lithium-polysulfides as well as catalyze their conversion.Due to these advantages,at a sulfur loading of 4 mg cm^(-2),Li-S cells with Ti_3 C_2 T_x@S/CC cathodes can deliver outstanding cycling stability(746.1 mAh g^(-1) after 200 cycles at1 C),superb rate performance(866.8 mAh g^(-1) up to 2 C) and a high specific energy density(564.2 Wh kg^(-1) after 100 cycles at 0.5 C).More significantly,they also show the commercial potential that can compete with current lithium-ion batteries due to the high areal capacity of 6.7 mAh cm^(-2) at the increased loading of 8 mg cm^(-2). 展开更多
关键词 Lithium-sulfur batteries high energy density Ti_(3)C_(2)T_(x) high sulfur loading 3D free-standing sulfur cathode
下载PDF
Thick free-standing electrode based on carbon-carbon nitride microspheres with large mesopores for high-energy-density lithium-sulfur batteries 被引量:2
4
作者 Hui-Ju Kang Tae-Gyu Lee +8 位作者 Heejin Kim Jae-Woo Park Hyun Jin Hwang Hyeonseok Hwang Kwang-Suk Jang Hae Jin Kim Yun Suk Huh Won Bin Im Young-Si Jun 《Carbon Energy》 CAS 2021年第3期410-423,共14页
The development of sulfur cathodes with high areal capacity and high energy density is crucial for the practical application of lithium-sulfur batteries(LSBs).LSBs can be built by employing(ultra)high-loading sulfur c... The development of sulfur cathodes with high areal capacity and high energy density is crucial for the practical application of lithium-sulfur batteries(LSBs).LSBs can be built by employing(ultra)high-loading sulfur cathodes,which have rarely been realized due to massive passivation and shuttling.Herein,microspheres of a carbon-carbon nitride composite(C@CN)with large mesopores are fabricated via molecular cooperative assembly.Using the C@CN-based electrodes,the effects of the large mesopores and N-functional groups on the electrochemical behavior of sulfur in LSB cells are thoroughly investigated under ultrahigh sulfur-loading conditions(>15 mgS cm^(-2)).Furthermore,for high-energy-density LSBs,the C@CN powders are pelletized into a thick free-standing electrode(thickness:500^m;diameter:11 mm)via a simple briquette process;here,the total amount of energy stored by the LSB cells is 39 mWh,corresponding to a volumetric energy density of 440 Wh L-1 with an areal capacity of 24.9 and 17.5 mAh cm^(-2) at 0.47 and 4.7 mA cm^(-2),respectively(at 24mgS cm^(-2)).These results have significantly surpassed most recent records due to the synergy among the large mesopores,(poly)sulfide-philic surfaces,and thick electrodes.The developed strategy with its potential for scale-up successfully fills the gap between laboratory-scale cells and practical cells without sacrificing the high areal capacity and high energy density,providing a solid foundation for the development of practical LSBs. 展开更多
关键词 briquette process carbon nitride free-standing electrode high energy density lithium-sulfur batteries MESOPORES
下载PDF
Fluorobenzene diluted low-density electrolyte for high-energy density and high-performance lithium-sulfur batteries 被引量:1
5
作者 Zhilong Han Shuping Li +5 位作者 Mengjun Sun Renjie He Wei Zhong Chuang Yu Shijie Cheng Jia Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期752-761,共10页
The mass fraction of electrolytes is the crucial factor affecting the energy density of lithium-sulfur(Li-S)batteries. Due to the high porosity within the C/S cathode, high concentration of polysulfides, and side reac... The mass fraction of electrolytes is the crucial factor affecting the energy density of lithium-sulfur(Li-S)batteries. Due to the high porosity within the C/S cathode, high concentration of polysulfides, and side reaction in lithiun metal anode under lean electrolyte, it is extremely challenging to improve performance while reducing the electrolyte volume. Here, we report a novel electrolyte with relatively low density(1.16 g cm^(-2)), low viscosity(1.84 m Pa s), and high ionic conductivity, which significantly promotes energy density and cyclability of Li-S batteries under practical conditions. Moreover, such electrolyte enables a hybrid cathode electrolyte interphase(CEI) and solid electrolyte interface(SEI) layer with plentiful Li F, which leads to fast kinetics of ions transport and stable cyclability even under low temperatures.Compared to Li-S batteries in electrolyte employing 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether(TTE) diluent, the ultra-thick cathode(20 mg cm^(-2)) shows a high capacity of 9.48 m Ah cm^(-2)and excellent capacity retention of 80.3% over 191 cycles at a low electrolyte-to-sulfur ratio(E/S = 2) and negative-to-positive capacity ratio(N/P = 2.5), realizing a 19.2% improvement in energy density in coin cells(from 370 to 441 Wh kg^(-1)) and a high energy density up to 467 Wh kg^(-1) in pouch cells. This study not only provides guidance for the electrolyte design but also paves the way for the development of high performance Li-S batteries under practical conditions. 展开更多
关键词 high energy density Lithium-sulfur battery Thick sulfur electrode Lean electrolyte Low-density electrolyte
下载PDF
Recent advances in functional oxides for high energy density sodium-ion batteries 被引量:3
6
作者 Hira Fatima Yijun Zhong +1 位作者 Hongwei Wu Zongping Shao 《Materials Reports(Energy)》 2021年第2期3-21,共19页
The rapid development of power generation from renewable energy,such as geothermal,wind,and tidal energy,arises the need for efficient and economic electrochemical energy storage systems for integrating electric power... The rapid development of power generation from renewable energy,such as geothermal,wind,and tidal energy,arises the need for efficient and economic electrochemical energy storage systems for integrating electric power smoothly into power grids.The lithium-ion battery has been successfully utilized for a variety of portable electronic devices but its application in large-scale energy storage has raised concerns about safety,availability of lithium resources,and its increasing price.Alternatively,sodium-ion battery(SIB)has been in acquisition predominantly,because of the abundant sodium resources over the earth’s crust at low cost.Developing high energy density electrode materials is one of the most intensive research topics.Oxides have been extensively investigated as the cathode and anode materials for high-performance and durable SIBs,owing to their various advantages including facile synthesis,versatile compositions,and easy structural tuning.In this review,we provide an in-time thorough summary of recent advances in oxide materials for cathodes and anodes for high energy density SIBs.The energy storage mechanism,challenges,categories,and optimizations of both electrodes are discussed.Existing research gaps and future perspectives are also outlined.This review is expected to accelerate the research for developing new pathways for tuning the properties of the oxide electrodes based on different sodium storage mechanisms. 展开更多
关键词 Sodium-ion battery OXIDE CATHODE ANODE high energy density
下载PDF
Superfast and solvent-free core-shell assembly of sulfur/carbon active particles by hail-inspired nanostorm technology for high-energy-density Li-S batteries
7
作者 Lanxiang Feng Zhiwei Zhu +6 位作者 Yan He Yuan Ji Xuewe He Lei Jing Mingbo Yang Wei Yang Yu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期565-573,共9页
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batterie... The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm^(-2) delivers a stable area capacity of 6.6 mAh cm^(-2) over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm^(-2) over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles. 展开更多
关键词 Core-shell assembly Sulfur/carbon secondary active particles high energy density lithium sulfur batteries Thick sulfur electrode Hail-inspired sulfur nanostorm technology
下载PDF
Fluorinated soft carbon as an ultra-high energy density potassium-ion battery cathode enabled by a ternary phase K_(x)FC
8
作者 Pengyu Chen Bojun Wang +4 位作者 Zhenrui Wu Xiaobin Niu Chuying Ouyang Hong Li Liping Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期38-44,I0002,共8页
Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond ... Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond strength for the alkaline intercalated CFx via importing an electronegative weaker element K instead of Li.It forms a ternary phase K_(x)FC instead of two phases(LiF+C)in lithium-ion batteries.Meanwhile,we choose a large layer distance and more defects CFx,namely fluorinated soft carbon,to accommodate K.Thus,we enable CFx rechargeable as a potassium-ion battery cathode.In detail fluorinated soft carbon CF_(1.01) presents a reversible specific capacity of 339 mA h g^(-1)(797 Wh kg^(-1))in the 2nd cycle and maintains 330 mA h g^(-1)(726 Wh kg^(-1))in the 15th cycle.This study reveals the importance of tuning chemical bond stability using different alkaline ions to endow batteries with rechargeability.This work provides good references for focusing on developing reversible electrode materials from popular primary cell configurations. 展开更多
关键词 Fluorinated carbon high energy density battery Potassium-ion battery Conversion reaction K-free cathode
下载PDF
Thin NASICON Electrolyte to Realize High Energy Density Solid-State Sodium Metal Battery
9
作者 Jin An Sam Oh Xiaoyu Xu +5 位作者 Zhihan Zeng Kexin Wang Nicholas Yew Jin Tan Eugene Kok Jiemin Huang Li Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期419-426,共8页
The solid-state electrolyte in a solid-state battery acts as an electrons'barrier and an ions'bridge between the two electrodes.As solid-state electrolyte does not store the mobile ions,it is necessary to achi... The solid-state electrolyte in a solid-state battery acts as an electrons'barrier and an ions'bridge between the two electrodes.As solid-state electrolyte does not store the mobile ions,it is necessary to achieve a thin solid-state electrolyte to reduce the internal resistance and enhance the energy density.In this work,a thin NASICON solid-state electrolyte,with a stoichiometry of Na_(3)Zr_(2)Si_(2)PO_(12),is fabricated by the tape-casting method and its thickness can be easily controlled by the gap between substrate and scraper.The areal-specific resistance and the flexural strength increase with the electrolyte thickness.A solid-state sodium metal battery with 86 pm thick Na_(3)Zr_(2)Si_(2)PO_(12)exhibits a reversible specific capacity of 73-78 mAh g^(-1)with a redox potential of 3.4 V at 0.2 C.This work presents the importance of electrolyte thickness to reduce internal resistance and achieve a high energy density for sodium batteries. 展开更多
关键词 high energy density NASICON solid-state battery solid-state electrolyte tape casting
下载PDF
High-Energy Batteries:Beyond Lithium-Ion and Their Long Road to Commercialisation 被引量:9
10
作者 Yulin Gao Zhenghui Pan +2 位作者 Jianguo Sun Zhaolin Liu John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期116-164,共49页
Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far ... Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far been the dominant choice,numerous emerging applications call for higher capacity,better safety and lower costs while maintaining sufficient cyclability.The design space for potentially better alternatives is extremely large,with numerous new chemistries and architectures being simultaneously explored.These include other insertion ions(e.g.sodium and numerous multivalent ions),conversion electrode materials(e.g.silicon,metallic anodes,halides and chalcogens)and aqueous and solid electrolytes.However,each of these potential“beyond lithium-ion”alternatives faces numerous challenges that often lead to very poor cyclability,especially at the commercial cell level,while lithium-ion batteries continue to improve in performance and decrease in cost.This review examines fundamental principles to rationalise these numerous developments,and in each case,a brief overview is given on the advantages,advances,remaining challenges preventing cell-level implementation and the state-of-the-art of the solutions to these challenges.Finally,research and development results obtained in academia are compared to emerging commercial examples,as a commentary on the current and near-future viability of these“beyond lithium-ion”alternatives. 展开更多
关键词 high energy density Beyond lithium-ion batteries Multivalent-ion batteries Conversion electrode materials ELECTROLYTE
下载PDF
Nitrogen-doped carbon stabilized Li Fe0.5Mn0.5PO4/rGO cathode materials for high-power Li-ion batteries 被引量:4
11
作者 Haifeng Yu Zhaofeng Yang +2 位作者 Huawei Zhu Hao Jiang Chunzhong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1935-1940,共6页
Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5P... Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5PO4/rGO@C cathode material by the synergistic effects of r GO and polydopamine-derived N-doped carbon.The well-distributed Li Fe0.5Mn0.5PO4nanoparticles are tightly anchored on r GO nanosheet benefited by the coating of N-doped carbon layer.The design of such an architecture can effectively suppress the agglomeration of nanoparticles with a shortened Li+transfer path.Meantime,the high-speed conducting network has been constructed by r GO and N-doped carbon,which exhibits the face-to-face contact with Li Fe0.5Mn0.5PO4nanoparticles,guaranteeing the rapid electron transfer.These profits endow the Li Fe0.5Mn0.5PO4/rGO@C hybrids with a fast charge-discharge ability,e.g.a high reversible capacity of 105 m Ah·g^-1at 10 C,much higher than that of the Li Fe0.5Mn0.5PO4@C nanoparticles(46 mA·h·g^-1).Furthermore,a 90.8%capacity retention can be obtained even after cycling 500 times at 2 C.This work gives a new avenue to fabricate transition metal phosphate with superior electrochemical performance for high-power Li-ion batteries. 展开更多
关键词 Cathode materials high power density CARBON Long cycle life li-ion batteries
下载PDF
An empirical model for high energy density lithium-(ion)batteries with ultra-thick electrodes 被引量:1
12
作者 Li-Ming Jin Guang-Guang Xing +4 位作者 Nan Qin Yan-Yan Lu Jun-Sheng Zheng Cun-Man Zhang Jim P.Zheng 《Tungsten》 EI CSCD 2024年第1期230-237,共8页
Increasing the electrode thickness is a significant method to decrease the weight and volume ratio of the inactive components for high energy density of the devices.In this contribution,we extracted a repeating unit i... Increasing the electrode thickness is a significant method to decrease the weight and volume ratio of the inactive components for high energy density of the devices.In this contribution,we extracted a repeating unit in the configurations and establish the empirical energy density model based on some assumptions.In this model,the effects of the electrode thickness on the energy density for lithium-ion batteries(LIBs),lithium metal batteries(LMBs),and anode-free lithium batteries(ALBs)are evaluated quantitively with the current parameters of the batteries.The results demonstrate that the structure evolutions from LIBs,LMBs to ALBs with the reduction of the anode weight contribution,the energy density can be well improved exactly.While the increase of the thickness of the electrode provide another route to furthe r enhance the energydensity by decreasing the weight contribution of inactive materials;meanwhile the effects for ALBs are higher than LMBs and LIBs due to the higher weight ratio of inactive materials.This empirical energy density model is also applied into the practical system and provide intuitional results to guide the battery design for higher energy density. 展开更多
关键词 Empirical model high energy density Lithium batteries Ultra-thick electrodes
原文传递
A Li_(3)P nanoparticle dispersion strengthened ultrathin Li metal electrode for high energy density rechargeable batteries
13
作者 Lin Fu Xiancheng Wang +3 位作者 Bao Zhang Zihe Chen Yuanjian Li Yongming Sun 《Nano Research》 SCIE EI CSCD 2024年第5期4031-4038,共8页
Achievement of lithium(Li)metal anode with thin thickness(e.g.,≤30µm)is highly desirable for rechargeable high energy density batteries.However,the fabrication and application of such thin Li metal foil electrod... Achievement of lithium(Li)metal anode with thin thickness(e.g.,≤30µm)is highly desirable for rechargeable high energy density batteries.However,the fabrication and application of such thin Li metal foil electrode remain challenging due to the poor mechanical processibility and inferior electrochemical performance of metallic Li.Here,mechanico-chemical synthesis of robust ultrathin Li/Li_(3)P(LLP)composite foils(~15µm)is demonstrated by employing repeated mechanical rolling/stacking operations using red P and metallic Li as raw materials.The in-situ formed Li+-conductive Li_(3)P nanoparticles in metallic Li matrix and their tight bonding strengthen the mechanical durability and enable the successful fabrication of free-standing ultrathin Li metal composite foil.Besides,it also reduces the electrochemical Li nucleation barrier and homogenizes Li plating/stripping behavior.When matching to high-voltage LiCoO_(2),the full cell with a low negative/positive(N/P)capacity ratio of~1.5 offers a high energy density of~522 W·h·kg^(-1) at 0.5 C based on the mass of cathode and anode.Taking into account its facile manufacturing,potentially low cost,and good electrochemical performance,we believe that such an ultrathin composite Li metal foil design with nanoparticle-dispersion-strengthened mechanism may boost the development of high energy density Li metal batteries. 展开更多
关键词 lithium metal anode high energy density battery mechanico-chemical synthesis ultrathin Li/Li_(3)P composite foil low negative/positive capacity ratio
原文传递
Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries 被引量:8
14
作者 Meng Zhao Yan-Qi Peng +2 位作者 Bo-Quan Li Xue-Qiang Zhang Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期203-208,共6页
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfu... Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm^(-2) and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries high sulfur content high areal loading Double-layer carbon high energy density
下载PDF
Bi Nanoparticles Anchored in N-Doped Porous Carbon as Anode of High Energy Density Lithium Ion Battery 被引量:4
15
作者 Yaotang Zhong Bin Li +6 位作者 Shumin Li Shuyuan Xu Zhenghui Pan Qiming Huang Lidan Xing Chunsheng Wang Weishan Li 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期10-23,共14页
A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC compo... A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC composite was synthesized via carbonization of Zn-containing zeolitic imidazolate(ZIF-8) and replacement of Zn with Bi, resulting in the N-doped carbon that was hierarchically porous and anchored with Bi nanoparticles. The matrix provides a highly electronic conductive network that facilitates the lithiation/delithiation of Bi.Additionally, it restrains aggregation of Bi nanoparticles and serves as a buffer layer to alleviate the mechanical strain of Bi nanoparticles upon Li insertion/extraction.With these contributions, Bi@NC exhibits excellent cycling stability and rate capacity compared to bare Bi nanoparticles or their simple composites with carbon. This study provides a new approach for fabricating high volumetric energy density LIBs. 展开更多
关键词 Porous N-doped carbon Bi nanoparticles ANODE Lithium-ion battery high energy density
下载PDF
A strategic way of high-performance energy storage device development with environmentally viable “Water-in-salt” electrolytes
16
作者 Prakas Samanta Souvik Ghosh +3 位作者 Aniruddha Kundu Pranab Samanta Naresh Chandra Murmu Tapas Kuila 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期350-373,I0010,共25页
Development of cost-effective and environmental friendly energy storage devices(ESDs) has attracted widespread attention in recent scenario of energy research.Recently,the environmentally viable "water-in-salt&qu... Development of cost-effective and environmental friendly energy storage devices(ESDs) has attracted widespread attention in recent scenario of energy research.Recently,the environmentally viable "water-in-salt"(WiS) electrolytes has received significant interest for the development of advanced high performance ESDs.The WiS electrolyte exhibits wide electrochemical stability window(ESW),highsafety,non-flammability and superior electrochemical performance compared to the conventional "salt-in-water" electrolytes.This review aims to provide a comprehensive discussion on WiS electrolyte based on theoretical,electrochemical and physicochemical characteristics.A strategic way for the usage of WiS electrolyte in rechargeable metal-ion batteries and supercapacitors with potentially improved electrochemical performance has been reviewed systematically.This review also discussed the unique advantages of WiS electrolytes as well as the future scope and challenges. 展开更多
关键词 Water-in-salt electrolyte Solid electrolyte interphase high energy density Aqueous batteries Aqueous supercapacitors
下载PDF
High-Voltage and Fast-Charging Lithium Cobalt Oxide Cathodes: From Key Challenges and Strategies to Future Perspectives
17
作者 Gongrui Wang Zhihong Bi +3 位作者 Anping Zhang Pratteek Das Hu Lin Zhong-Shuai Wu 《Engineering》 SCIE EI CAS CSCD 2024年第6期105-127,共23页
Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithiu... Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs. 展开更多
关键词 Lithium cobalt oxide high energy/power density Fast-charging high-VOLTAGE Lithium-ion battery
下载PDF
Analysis of Hybrid Rechargeable Energy Storage Systems in Series Plug-In Hybrid Electric Vehicles Based on Simulations
18
作者 Karel Fleurbaey Noshin Omar +2 位作者 Mohamed El Baghdadi Jean-Marc Timmermans Joeri Van Mierlo 《Energy and Power Engineering》 2014年第8期195-211,共17页
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba... In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system. 展开更多
关键词 Plug-In HYBRID Electric vehicle HYBRID energy Storage System high energy BATTERY high Power BATTERY Electrical DOUBLE-LAYER CAPACITOR Lithium-Ion CAPACITOR
下载PDF
Catholyte engineering to release the capacity of iodide for high-energy-density iodine-based redox flow batteries 被引量:1
19
作者 Bo Lu Minghui Yang +6 位作者 Mei Ding Su Yan Weizhe Xiang Yuanhang Cheng Hu Fu Zhizhao Xu Chuankun Jia 《SusMat》 2023年第4期522-532,共11页
Due to the high solubility,high reversibility,and low cost of iodide,iodine-based redox flow batteries(RFBs)are considered to have great potential for upscaling energy storage.However,their further development has bee... Due to the high solubility,high reversibility,and low cost of iodide,iodine-based redox flow batteries(RFBs)are considered to have great potential for upscaling energy storage.However,their further development has been limited by the low capacity of I−as one-third of the I−is used to form I3−(I2I−)during the charging process.Herein,we have demonstrated that the pseudohalide ion,thiocyanate(SCN−),is a promising complexing agent for catholyte of iodinebased RFBs to free up the I−by forming iodine-thiocyanate ions([I2SCN]−)instead of I3−,unlocking the capacity of iodide.Applying this strategy,we have demonstrated iodine-based RFBs with full utilization of iodide to achieve high capacity and high energy density.Both the zinc/iodine RFB and polysulfide/iodine RFB with SCN−complex agent achieve their theoretical capacity of around 160 A h Lposolyte^(−1)(6.0MI−in catholyte).Therefore,the zinc/iodine RFB delivers a high energy density of 221.34Wh Lposolyte^(−1),and the polysulfide/iodine RFB achieves a highenergy density of 165.62Wh Lposolyte^(−1).It is believed that this effective catholyte engineering can be further generalized to other iodine-based RFBs,offering new opportunities to unlock the capacity of iodide and achieve high energy density for energy storage. 展开更多
关键词 energy storage high energy density iodine-based redox flow batteries unlock iodide capacity
原文传递
Review on cellulose paper-based electrodes for sustainable batteries with high energy densities
20
作者 Ying Zhang Zhaohui Wang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第8期1010-1027,共18页
Powering the future,while maintaining strong socioeconomic growth and a cleaner environment,is going to be one of the biggest challenges faced by mankind nowadays.Thus,there is a transition from the use of fossil fuel... Powering the future,while maintaining strong socioeconomic growth and a cleaner environment,is going to be one of the biggest challenges faced by mankind nowadays.Thus,there is a transition from the use of fossil fuels to renewable energy sources.Cellulose,the main component of paper,represents a unique type of bio-based building blocks featuring exciting properties:low-cost,hierarchical fibrous structures,hydrophilicity,biocompatible,mechanical flexibility,and renewability,which make it perfect for use in paper-based sustainable energy storage devices.This review focuses on lithium-ion battery application of celluloses with cellulose at different scales,i.e.,cellulose microfibers,and nanocellulose,and highlights the new trends in the field.Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed.This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints. 展开更多
关键词 CELLULOSE paper electrodes li-ion batteries high energy density
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部