Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform a...Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform an extensive structure search of ternary carbon-nitrogen-oxygen(CNO)compound under high pressure with the CALYPSO method and first principles calculations,and successfully identify three polymeric CNO compounds with Pbam,C2/m and I4m2symmetries under 100 GPa.More interestingly,these structures are also dynamically stable at ambient pressure,and are potential high energy density materials(HEDMs).The energy densities of Pbam,C2/m and I4m2 phases of CNO are about2.30 kJ/g,1.37 kJ/g and 2.70 kJ/g,respectively,with the decompositions of graphitic carbon and molecular carbon dioxide andα-N(molecular N_(2))at ambient pressure.The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures,which offer crucial insights for designs and syntheses of novel HEDMs.展开更多
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C...With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.展开更多
Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy...Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated.展开更多
Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far ...Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far been the dominant choice,numerous emerging applications call for higher capacity,better safety and lower costs while maintaining sufficient cyclability.The design space for potentially better alternatives is extremely large,with numerous new chemistries and architectures being simultaneously explored.These include other insertion ions(e.g.sodium and numerous multivalent ions),conversion electrode materials(e.g.silicon,metallic anodes,halides and chalcogens)and aqueous and solid electrolytes.However,each of these potential“beyond lithium-ion”alternatives faces numerous challenges that often lead to very poor cyclability,especially at the commercial cell level,while lithium-ion batteries continue to improve in performance and decrease in cost.This review examines fundamental principles to rationalise these numerous developments,and in each case,a brief overview is given on the advantages,advances,remaining challenges preventing cell-level implementation and the state-of-the-art of the solutions to these challenges.Finally,research and development results obtained in academia are compared to emerging commercial examples,as a commentary on the current and near-future viability of these“beyond lithium-ion”alternatives.展开更多
The microstructures on electrode level are crucial for battery performance, but the ambiguous understanding of both electrode microstructures and their structuring process causes critical challenges in controlling and...The microstructures on electrode level are crucial for battery performance, but the ambiguous understanding of both electrode microstructures and their structuring process causes critical challenges in controlling and evaluating the electrode quality during fabrication. In this review, analogous to the cell microenvironment well-known in biology, we introduce the concept of ‘‘active material microenvironment”(ME@AM)that is built by the ion/electron transport structures surrounding the AMs, for better understanding the significance of the electrode microstructures. Further, the scientific significance of electrode processing for electrode quality control is highlighted by its strong links to the structuring and quality control of ME@AM. Meanwhile, the roles of electrode rheology in both electrode structuring and structural characterizations involved in the entire electrode manufacturing process(i.e., slurry preparation, coating/printing/extrusion, drying and calendering) are specifically detailed. The advantages of electrode rheology testing on in-situ characterizations of the electrode qualities/structures are emphasized. This review provides a glimpse of the electrode rheology engaged in electrode manufacturing process and new insights into the understanding and effective regulation of electrode microstructures for future high-performance batteries.展开更多
The performance of an energetic compound is mainly decided by parameters such as density, oxygen balance, heat of formation,and stability. Among these properties, density is the most important factor because it determ...The performance of an energetic compound is mainly decided by parameters such as density, oxygen balance, heat of formation,and stability. Among these properties, density is the most important factor because it determines the detonation pressure and velocity. One of the trends in the development of high-energy-density materials(HEDMs) involves the study of energetic materials with high nitrogen levels. A compound with high nitrogen content can obtain substantial energy from the heat of formation rather than from the intramolecular oxidation of carbon skeleton to release energy in the form of a nitro group or nitrate ester. In addition to excellent performance, the newly developed energetic materials should also possess high working power and insensitivity toward external influences for ensuring the safety of charge and service, high energy release rate, long service life,good compatibility, excellent biological performance, low toxicity, safe battlefield environment, and low moisture absorption,which meet the requirements of military and civilian use. This review summarizes the research progress on global HEDMs.TNAZ, FOX-7, octanitrocubanane, TAM, TKX-50, and N5 were believed to show promise in achieving application goals. The prospective vision of HEDMs containing ions, total nitrogen, metal hydrogen, and nuclear energetic isomers, overcoming technical barriers, synthesis of all-nitrogen materials, theoretical studies on desorption/adsorption system, and challenging technical problems that need to be solved for the safety of synthetic nitrogen compounds were discussed to further elucidate the effect of this subject.展开更多
Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(S...Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(SSA),abundant oxygen/nitrogen-containing groups,desirable electrical conductivity and admirable electrochemical redox activity,and hold great potential for constructing high-performance planar micro-supercapacitors(MSCs).Herein,we demonstrate the interfacial assembly of 2D mesoporous polydopamine/graphene(mPDG)heterostructures with well-defined mesopore structure(12 nm)and adjustable thickness(7.5–14.1 nm)for planar high-energy pseudocapacitive MSCs.Attributed to medium thickness,exposed mesopore of 12 nm and large SSA of 108 m^(2)/g,the m PDG with 10.8 nm thickness reveals prominent mass capacitance of 419 F/g and impressive cycling stability with~96%capacitance retention after 5000 cycles.Furthermore,the symmetric mPDG-based MSCs with“water-in-salt”gel electrolyte present wide voltage window of 1.6 V,superior volumetric energy density of 11.5 mWh/cm^(3),outstanding flexibility and self-integration ability.Therefore,this work offers a new platform of controllably synthesizing 2D mesoporous heterostructures for high-performance MSCs.展开更多
Lithium-ion capacitors(LICs)are regarded as a good choice for next-generation energy storage devices,which are expected to exhibit high energy densities,high power densities,and ultra-long cycling stability.Neverthele...Lithium-ion capacitors(LICs)are regarded as a good choice for next-generation energy storage devices,which are expected to exhibit high energy densities,high power densities,and ultra-long cycling stability.Nevertheless,only a few battery-type cathode materials with limited kinetic properties can be employed in LICs,and their electrochemical properties need to be optimized urgently.Here,we exploit a new dendrite-structured FeF_(2) consisting of closely linked primary nanoparticles using a facile solvothermal method combined with the subsequent annealing treatment.This particular architecture has favorable transport pathways for both lithium ions and electrons and exhibits an ultrafast chargedischarge capability with high reversible capacities.Furthermore,a well-designed LIC employing the prepared dendrite-structured FeF_(2) as the battery-type cathode and commercialized activated carbon(AC)as supercapacitor-type anode was constructed in an organic electrolyte containing Li ions.The LIC operates at an optimal voltage range of 1.1-3.8 V and shows a maximum high energy density of 152 W h kg^(-1) and a high power density of 4900 W kg^(-1) based on the total mass of cathode and anode.Long-term cycling stability(85%capacity retention after 2000 cycles)was achieved at 1 A g^(-1).This work suggests that the dendrite-structured FeF_(2) is a prime candidate for high-performance LICs and accelerates the development of hybrid ion capacitor devices.展开更多
Potassium-ion hybrid capacitors(KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors.The development of KIHCs is subject to the investigation of appl...Potassium-ion hybrid capacitors(KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors.The development of KIHCs is subject to the investigation of applicable K+storage materials which are able to accommodate the relatively large size and high activity of potassium.Here,we report a cocoon silk chemistry strategy to synthesize a hierarchically porous nitrogen-doped carbon(SHPNC).The as-prepared SHPNC with high surface area and rich N-doping not only offers highly efficient channels for the fast transport of electrons and K ions during cycling,but also provides sufficient void space to relieve volume expansion of electrode and improves its stability.Therefore,KIHCs with SHPNC anode and activated carbon cathode afford high energy of 135 Wh kg-1(calculated based on the total mass of anode and cathode),long lifespan,and ultrafast charge/slow discharge performance.This study defines that the KIHCs show great application prospect in the field of high-performance energy storage devices.展开更多
There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucia...There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucial for the development of high-energy-density cathodes.Here we present highperformance aqueous zinc-manganese batteries with reversible Mn2+/Mn4+ double redox.The active Mn4+is generated in situ from the Mn2+-containing MnOx nanoparticles and electrolyte.Benefitting from the low crystallinity of the birnessite-type MnO2 as well as the electrolyte with Mn2+additive,the MnOX cathode achieves an ultrahigh energy density with a peak of845.1 Wh kg-1 and an ultralong lifespan of 1500 cycles.The combination of electrochemical measurements and material characterization reveals the reversible Mn2+/Mn4+double redox(birnessite-type MnO2? monoclinic MnOOH and spinel ZnMn2O4 H?Mn2+ions).The reversible Mn2+/Mn4+double redox electrode reaction mechanism offers new opportunities for the design of low-cost,high-energy-density cathodes for advanced rechargeable aqueous batteries.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12174352 and 12111530103)the Fundamental Research Funds for the Central UniversitiesChina University of Geosciences(Wuhan)(Grant No.G1323523065)。
文摘Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform an extensive structure search of ternary carbon-nitrogen-oxygen(CNO)compound under high pressure with the CALYPSO method and first principles calculations,and successfully identify three polymeric CNO compounds with Pbam,C2/m and I4m2symmetries under 100 GPa.More interestingly,these structures are also dynamically stable at ambient pressure,and are potential high energy density materials(HEDMs).The energy densities of Pbam,C2/m and I4m2 phases of CNO are about2.30 kJ/g,1.37 kJ/g and 2.70 kJ/g,respectively,with the decompositions of graphitic carbon and molecular carbon dioxide andα-N(molecular N_(2))at ambient pressure.The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures,which offer crucial insights for designs and syntheses of novel HEDMs.
文摘With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.
基金supported by the Energy Efficiency and Renewable Energy,Building Technologies Program,of the US Department of Energy,under contract no.DE-AC02-05CH11231the support on the DSC/TGA 3+supported by the Office of Science,Office of Basic Energy Sciences,of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231
文摘Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated.
基金J.Wang acknowledges the support by MOE,Singapore Ministry of Education(MOE2018-T2-2-095)for research work conducted at the National University of Singapore.Z.L.Liu acknowledges the A*STAR’s Central Research Funds(CRF)Award(Project:SC25/21-111312)+1 种基金Y.Gao acknowledges financial support by ST Engineering Advanced Material Engineering Pte.Ltd.and Singapore Economic Development BoardOpen access funding provided by Shanghai Jiao Tong University
文摘Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far been the dominant choice,numerous emerging applications call for higher capacity,better safety and lower costs while maintaining sufficient cyclability.The design space for potentially better alternatives is extremely large,with numerous new chemistries and architectures being simultaneously explored.These include other insertion ions(e.g.sodium and numerous multivalent ions),conversion electrode materials(e.g.silicon,metallic anodes,halides and chalcogens)and aqueous and solid electrolytes.However,each of these potential“beyond lithium-ion”alternatives faces numerous challenges that often lead to very poor cyclability,especially at the commercial cell level,while lithium-ion batteries continue to improve in performance and decrease in cost.This review examines fundamental principles to rationalise these numerous developments,and in each case,a brief overview is given on the advantages,advances,remaining challenges preventing cell-level implementation and the state-of-the-art of the solutions to these challenges.Finally,research and development results obtained in academia are compared to emerging commercial examples,as a commentary on the current and near-future viability of these“beyond lithium-ion”alternatives.
基金the financial support from the National Natural Science Foundation of China and the start-up projectthe Sichuan-University-Dazhou Joint project(00309053A2037)+1 种基金the Fundamental Research Funds for the Central Universitiespartially sponsored by the Double First-Class Construction Funds of Sichuan University。
文摘The microstructures on electrode level are crucial for battery performance, but the ambiguous understanding of both electrode microstructures and their structuring process causes critical challenges in controlling and evaluating the electrode quality during fabrication. In this review, analogous to the cell microenvironment well-known in biology, we introduce the concept of ‘‘active material microenvironment”(ME@AM)that is built by the ion/electron transport structures surrounding the AMs, for better understanding the significance of the electrode microstructures. Further, the scientific significance of electrode processing for electrode quality control is highlighted by its strong links to the structuring and quality control of ME@AM. Meanwhile, the roles of electrode rheology in both electrode structuring and structural characterizations involved in the entire electrode manufacturing process(i.e., slurry preparation, coating/printing/extrusion, drying and calendering) are specifically detailed. The advantages of electrode rheology testing on in-situ characterizations of the electrode qualities/structures are emphasized. This review provides a glimpse of the electrode rheology engaged in electrode manufacturing process and new insights into the understanding and effective regulation of electrode microstructures for future high-performance batteries.
文摘The performance of an energetic compound is mainly decided by parameters such as density, oxygen balance, heat of formation,and stability. Among these properties, density is the most important factor because it determines the detonation pressure and velocity. One of the trends in the development of high-energy-density materials(HEDMs) involves the study of energetic materials with high nitrogen levels. A compound with high nitrogen content can obtain substantial energy from the heat of formation rather than from the intramolecular oxidation of carbon skeleton to release energy in the form of a nitro group or nitrate ester. In addition to excellent performance, the newly developed energetic materials should also possess high working power and insensitivity toward external influences for ensuring the safety of charge and service, high energy release rate, long service life,good compatibility, excellent biological performance, low toxicity, safe battlefield environment, and low moisture absorption,which meet the requirements of military and civilian use. This review summarizes the research progress on global HEDMs.TNAZ, FOX-7, octanitrocubanane, TAM, TKX-50, and N5 were believed to show promise in achieving application goals. The prospective vision of HEDMs containing ions, total nitrogen, metal hydrogen, and nuclear energetic isomers, overcoming technical barriers, synthesis of all-nitrogen materials, theoretical studies on desorption/adsorption system, and challenging technical problems that need to be solved for the safety of synthetic nitrogen compounds were discussed to further elucidate the effect of this subject.
基金supported by the National Natural Science Foundation of China(Nos.22109040,22125903,22279137)Top-Notch Talent Program of Henan Agricultural University(No.30500947)+5 种基金the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA21000000)DICP(No.DICP I202032)Dalian National Laboratory for Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(Nos.DNL202016,DNL202019)International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(No.YJ20210311)China Postdoctoral Science Foundation(No.2021M703145)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Nos.YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)。
文摘Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(SSA),abundant oxygen/nitrogen-containing groups,desirable electrical conductivity and admirable electrochemical redox activity,and hold great potential for constructing high-performance planar micro-supercapacitors(MSCs).Herein,we demonstrate the interfacial assembly of 2D mesoporous polydopamine/graphene(mPDG)heterostructures with well-defined mesopore structure(12 nm)and adjustable thickness(7.5–14.1 nm)for planar high-energy pseudocapacitive MSCs.Attributed to medium thickness,exposed mesopore of 12 nm and large SSA of 108 m^(2)/g,the m PDG with 10.8 nm thickness reveals prominent mass capacitance of 419 F/g and impressive cycling stability with~96%capacitance retention after 5000 cycles.Furthermore,the symmetric mPDG-based MSCs with“water-in-salt”gel electrolyte present wide voltage window of 1.6 V,superior volumetric energy density of 11.5 mWh/cm^(3),outstanding flexibility and self-integration ability.Therefore,this work offers a new platform of controllably synthesizing 2D mesoporous heterostructures for high-performance MSCs.
基金funding support from the National Natural Science Foundation of China(51804173)the Shandong Provincial Natural Science Foundation(ZR2018BB030)+1 种基金the Qingdao Science and Technology Plan Applied Basic Research(Youth Special Project,18-2-2-22-jch)the funding support from “Distinguished Taishan Scholar”project。
文摘Lithium-ion capacitors(LICs)are regarded as a good choice for next-generation energy storage devices,which are expected to exhibit high energy densities,high power densities,and ultra-long cycling stability.Nevertheless,only a few battery-type cathode materials with limited kinetic properties can be employed in LICs,and their electrochemical properties need to be optimized urgently.Here,we exploit a new dendrite-structured FeF_(2) consisting of closely linked primary nanoparticles using a facile solvothermal method combined with the subsequent annealing treatment.This particular architecture has favorable transport pathways for both lithium ions and electrons and exhibits an ultrafast chargedischarge capability with high reversible capacities.Furthermore,a well-designed LIC employing the prepared dendrite-structured FeF_(2) as the battery-type cathode and commercialized activated carbon(AC)as supercapacitor-type anode was constructed in an organic electrolyte containing Li ions.The LIC operates at an optimal voltage range of 1.1-3.8 V and shows a maximum high energy density of 152 W h kg^(-1) and a high power density of 4900 W kg^(-1) based on the total mass of cathode and anode.Long-term cycling stability(85%capacity retention after 2000 cycles)was achieved at 1 A g^(-1).This work suggests that the dendrite-structured FeF_(2) is a prime candidate for high-performance LICs and accelerates the development of hybrid ion capacitor devices.
基金financially supported by the Fundamental Research Funds of the Central Universities(No.531118010112)the Double FirstClass University Initiative of Hunan University(No.531109100004)+1 种基金the Fundamental Research Funds of the Central Universities(No.531107051048)support from the Hunan Key Laboratory of TwoDimensional Materials(No.801200005)。
文摘Potassium-ion hybrid capacitors(KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors.The development of KIHCs is subject to the investigation of applicable K+storage materials which are able to accommodate the relatively large size and high activity of potassium.Here,we report a cocoon silk chemistry strategy to synthesize a hierarchically porous nitrogen-doped carbon(SHPNC).The as-prepared SHPNC with high surface area and rich N-doping not only offers highly efficient channels for the fast transport of electrons and K ions during cycling,but also provides sufficient void space to relieve volume expansion of electrode and improves its stability.Therefore,KIHCs with SHPNC anode and activated carbon cathode afford high energy of 135 Wh kg-1(calculated based on the total mass of anode and cathode),long lifespan,and ultrafast charge/slow discharge performance.This study defines that the KIHCs show great application prospect in the field of high-performance energy storage devices.
基金supported by the National Natural Science Foundation of China(Grant No.51772331)the National Key Technologies R&D Program(Grant No.2018YFB1106000).
文摘There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucial for the development of high-energy-density cathodes.Here we present highperformance aqueous zinc-manganese batteries with reversible Mn2+/Mn4+ double redox.The active Mn4+is generated in situ from the Mn2+-containing MnOx nanoparticles and electrolyte.Benefitting from the low crystallinity of the birnessite-type MnO2 as well as the electrolyte with Mn2+additive,the MnOX cathode achieves an ultrahigh energy density with a peak of845.1 Wh kg-1 and an ultralong lifespan of 1500 cycles.The combination of electrochemical measurements and material characterization reveals the reversible Mn2+/Mn4+double redox(birnessite-type MnO2? monoclinic MnOOH and spinel ZnMn2O4 H?Mn2+ions).The reversible Mn2+/Mn4+double redox electrode reaction mechanism offers new opportunities for the design of low-cost,high-energy-density cathodes for advanced rechargeable aqueous batteries.