The impact propylene copolymer (IPC) and isotactic polypropylene (iPP) were separately selected to prepare laminates with high density polyethylene (HDPE) by hot press. The peel forces of IPC/HDPE and iPP/HDPE l...The impact propylene copolymer (IPC) and isotactic polypropylene (iPP) were separately selected to prepare laminates with high density polyethylene (HDPE) by hot press. The peel forces of IPC/HDPE and iPP/HDPE laminates were examined, and it was found that the welded joint strength in IPC/HDPE laminate was dramatically higher than that of iPP/HDPE laminate. According to the special microstructure of IPC, the co-crystallization of the ethylene segments in ethylene-propylene block copolymer (EbP) component of IPC and the PE chain in HDPE was proposed to explain the high- strength welding. The DSC results indicated that there indeed existed some interaction between IPC and HDPE, and the crystallizable PE component in IPC could affect the crystallization of HDPE. The scanning electron microscope (SEM) observations of IPC/HDPE blends demonstrated that HDPE tended to stay with the PE-rich EbP chains to form the dispersed phase, indicating the good miscibility between HDPE and EbP components of IPC. According to the above results, the effect of co-crystallization of the PE components of the IPC and HDPE on the high weld strength of IPC/HDPE laminate was confirmed.展开更多
考察了以煤为原料生产的高流动抗冲聚丙烯2240S与其对比牌号石油基聚丙烯YP和AR偏光显微镜的结晶形貌、液氮淬断样品断口形貌、热力学性能和基本物理性能等。结果表明,三种样品综合性能相当,均能满足下游加工应用客户和改性应用客户需求...考察了以煤为原料生产的高流动抗冲聚丙烯2240S与其对比牌号石油基聚丙烯YP和AR偏光显微镜的结晶形貌、液氮淬断样品断口形貌、热力学性能和基本物理性能等。结果表明,三种样品综合性能相当,均能满足下游加工应用客户和改性应用客户需求,但存在一定差异。2240S刚性好,弯曲弹性模量达到1 239 MPa,但韧性略低,常温冲击强度7.0 k J/m^2,需要合理控制乙丙橡胶相的含量,分布及形态,提高产品冲击性能;YP刚性低,弯曲弹性模量达到1 091 MPa,但韧性最好,常温冲击强度11.0 k J/m^2,需降低乙烯和乙丙橡胶相含量,优化产品分子结构,提高产品刚性;AR达到刚韧平衡,弯曲弹性模量为1 175 MPa,常温冲击强度7.9 k J/m^2,乙丙橡胶相粒子大小和分布均匀、综合性能最佳。展开更多
基金supported by the National Basic Research Program of China(No.2005CB623800)the National Natural Science Foundation of China(No.50603023)the Joint Research Fund for Overseas Chinese Young Scholars (No.50728302)
文摘The impact propylene copolymer (IPC) and isotactic polypropylene (iPP) were separately selected to prepare laminates with high density polyethylene (HDPE) by hot press. The peel forces of IPC/HDPE and iPP/HDPE laminates were examined, and it was found that the welded joint strength in IPC/HDPE laminate was dramatically higher than that of iPP/HDPE laminate. According to the special microstructure of IPC, the co-crystallization of the ethylene segments in ethylene-propylene block copolymer (EbP) component of IPC and the PE chain in HDPE was proposed to explain the high- strength welding. The DSC results indicated that there indeed existed some interaction between IPC and HDPE, and the crystallizable PE component in IPC could affect the crystallization of HDPE. The scanning electron microscope (SEM) observations of IPC/HDPE blends demonstrated that HDPE tended to stay with the PE-rich EbP chains to form the dispersed phase, indicating the good miscibility between HDPE and EbP components of IPC. According to the above results, the effect of co-crystallization of the PE components of the IPC and HDPE on the high weld strength of IPC/HDPE laminate was confirmed.
文摘考察了以煤为原料生产的高流动抗冲聚丙烯2240S与其对比牌号石油基聚丙烯YP和AR偏光显微镜的结晶形貌、液氮淬断样品断口形貌、热力学性能和基本物理性能等。结果表明,三种样品综合性能相当,均能满足下游加工应用客户和改性应用客户需求,但存在一定差异。2240S刚性好,弯曲弹性模量达到1 239 MPa,但韧性略低,常温冲击强度7.0 k J/m^2,需要合理控制乙丙橡胶相的含量,分布及形态,提高产品冲击性能;YP刚性低,弯曲弹性模量达到1 091 MPa,但韧性最好,常温冲击强度11.0 k J/m^2,需降低乙烯和乙丙橡胶相含量,优化产品分子结构,提高产品刚性;AR达到刚韧平衡,弯曲弹性模量为1 175 MPa,常温冲击强度7.9 k J/m^2,乙丙橡胶相粒子大小和分布均匀、综合性能最佳。