The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improv...The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.展开更多
We develop a high resolution ground penetrating radar system (LANRCS-GPR) based on the E5071B Vector Network Analyzer (VNA). This system takes advantage of a wideband and adjustable frequency domain ground penetra...We develop a high resolution ground penetrating radar system (LANRCS-GPR) based on the E5071B Vector Network Analyzer (VNA). This system takes advantage of a wideband and adjustable frequency domain ground penetrating radar system and adds the characteristics of a network analyzer with ultra-wideband and high precision measurement. It adopts the LAN mode to concatenate system control that reduces construction cost and makes the system easy to expand. The high resolution ground penetrating radar system carries out real time imaging using F-K migration with high calculation efficiency. The experiment results of the system indicate that the LANRCS-GPR system provides high resolution and precision, high signal-to-noise ratio, and great dynamic range. Furthermore, the LANRCS-GPR system is flexible and reliable to operate with easy to expand system functions. The research and development of the LANRCS-GPR provide the theoretical and experimental foundation for future frequency domain ground penetrating radar production and also can serve as an experimental platform with high data gathering precision, enormous information capability, wide application, and convenient operation for electromagnetic wave research and electromagnetic exploration.展开更多
为提高光电跟踪伺服系统的跟踪精度,对输入信号未知条件下系统跟踪问题进行了研究。在单位负反馈系统基础上提出二次跟踪控制方法,并对系统频域特性进行了研究。结合光电跟踪伺服系统的特点,在跟踪探测器输出延迟条件下进行了控制律设...为提高光电跟踪伺服系统的跟踪精度,对输入信号未知条件下系统跟踪问题进行了研究。在单位负反馈系统基础上提出二次跟踪控制方法,并对系统频域特性进行了研究。结合光电跟踪伺服系统的特点,在跟踪探测器输出延迟条件下进行了控制律设计。仿真结果表明二次跟踪控制大幅提高了伺服系统对机动目标的稳态跟踪精度,比PI控制提高39倍,比PI+速度滞后补偿控制提高9倍,测试结果表明在40 m s延迟作用下,目标做50°/s,30°/s2等效正弦运动时稳态跟踪精度达到1′。展开更多
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793
文摘The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.
基金This project was supported by National Natural Science Foundation of china (No.40474042)
文摘We develop a high resolution ground penetrating radar system (LANRCS-GPR) based on the E5071B Vector Network Analyzer (VNA). This system takes advantage of a wideband and adjustable frequency domain ground penetrating radar system and adds the characteristics of a network analyzer with ultra-wideband and high precision measurement. It adopts the LAN mode to concatenate system control that reduces construction cost and makes the system easy to expand. The high resolution ground penetrating radar system carries out real time imaging using F-K migration with high calculation efficiency. The experiment results of the system indicate that the LANRCS-GPR system provides high resolution and precision, high signal-to-noise ratio, and great dynamic range. Furthermore, the LANRCS-GPR system is flexible and reliable to operate with easy to expand system functions. The research and development of the LANRCS-GPR provide the theoretical and experimental foundation for future frequency domain ground penetrating radar production and also can serve as an experimental platform with high data gathering precision, enormous information capability, wide application, and convenient operation for electromagnetic wave research and electromagnetic exploration.
文摘为提高光电跟踪伺服系统的跟踪精度,对输入信号未知条件下系统跟踪问题进行了研究。在单位负反馈系统基础上提出二次跟踪控制方法,并对系统频域特性进行了研究。结合光电跟踪伺服系统的特点,在跟踪探测器输出延迟条件下进行了控制律设计。仿真结果表明二次跟踪控制大幅提高了伺服系统对机动目标的稳态跟踪精度,比PI控制提高39倍,比PI+速度滞后补偿控制提高9倍,测试结果表明在40 m s延迟作用下,目标做50°/s,30°/s2等效正弦运动时稳态跟踪精度达到1′。