The effects of two types of magnetic fields,namely harmonic magnetic field(HMF)and pulse magnetic field(PMF)on magnetic flux density,Lorentz force,temperature field,and microstructure of high purity Cu were studied by...The effects of two types of magnetic fields,namely harmonic magnetic field(HMF)and pulse magnetic field(PMF)on magnetic flux density,Lorentz force,temperature field,and microstructure of high purity Cu were studied by numerical simulation and experiment during electromagnetic direct chill casting.The magnetic field is induced by a magnetic generation system including an electromagnetic control system and a cylindrical crystallizer of 300 mm in diameter equipped with excitation coils.A comprehensive mathematical model for high purity Cu electromagnetic casting was established in finite element method.The distributions of magnetic flux density and Lorentz force generated by the two magnetic fields were acquired by simulation and experimental measurement.The microstructure of billets produced by HMF and PMF casting was compared.Results show that the magnetic flux density and penetrability of PMF are significantly higher than those of HMF,due to its faster variation in transient current and higher peak value of magnetic flux density.In addition,PMF drives a stronger Lorentz force and deeper penetration depth than HMF does,because HMF creates higher eddy current and reverse electromagnetic field which weakens the original electromagnetic field.The microstructure of a billet by HMF is composed of columnar structure regions and central fine grain regions.By contrast,the billet by PMF has a uniform microstructure which is characterized by ultra-refined and uniform grains because PMF drives a strong dual convection,which increases the uniformity of the temperature field,enhances the impact of the liquid flow on the edge of the liquid pool and reduces the curvature radius of liquid pool.Eventually,PMF shows a good prospect for industrialization.展开更多
The effects of separation time and magnetic induction intensity on the separation efficiency of alumina particles with diameters varying from 30 to 200 μm in aluminum melt were investigated. The experimental results ...The effects of separation time and magnetic induction intensity on the separation efficiency of alumina particles with diameters varying from 30 to 200 μm in aluminum melt were investigated. The experimental results show that the particle-accumulated layer is formed in the periphery of the solidified specimen when the diameter of the separated molten metal, the magnetic induction intensity and the separation time are 10 mm, 0.04 T and 1 s, respectively. When the separation time is 2 s, the particle-accumulated layer can be observed obviously and the separation efficiency is about 80%. There are few alumina particles in the inner of the solidified specimen when the separation time is 3 s. The separation efficiency higher than 85% can be achieved when the separation time is longer than 3 s. When the magnetic induction intensity is 0.06 T, the visible particle-accumulated layer can be formed in 1 s and the separation efficiency is higher than 95%. The experimental results were compared with the calculated results at last.展开更多
The results of experiments and simulations show that there is a turbulent flow in the molten aluminum and it is hard to be restrained in the thin tubule (diameter of 6 mm) when the electromagnetic body force is applie...The results of experiments and simulations show that there is a turbulent flow in the molten aluminum and it is hard to be restrained in the thin tubule (diameter of 6 mm) when the electromagnetic body force is applied. The electromagnetic elimination experimental results show that the flow has serious effect on the elimination of 5 μm alumina inclusions, but has little effect on the 30 μm and 100 μm primary silicon. The effects of the electromagnetic field and the turbulent flow on the electromagnetic elimination are discussed.展开更多
Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to...Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to complete measurements. To protect the magnetic field sensors from intense erosion and high pressure, suitable high-pressure sealed cabins must be designed to load them. For the consideration of magnetic measurement and marine operation, the sealed pressure cabin should be nonmagnetic and transportable. Among all optional materials, LC4 super.hard aluminum alloy has the highest performance of price/quality ratio to make the sealed pressure cabin. However, it does not mean that the high-pressure sealed cabin made using LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure cabin made using LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect does not affect the use of the magnetic field sensor, but if we want to eliminate its effect, we should study it by experimental measurements. In our experiment tests, frequency sweep magnetic field as excitation signal was used, and then responses of the magnetic field sensor before and after being loaded into the high-pressure sealed cabin were measured. Finally, normalized abnormal curves for the frequency responses were obtained, through which we could show how the high-pressure sealed cabin produces effects on the responses of the magnetic field sensor. Experimental results suggest that the response distortion induced by the sealed pressure cabin appears on mid- and high-frequency areas. Using experimental results as standardization data, the frequency responses collected from seafloor magnetotelluric measurements can be corrected to restore real information about the seafloor field source.展开更多
A set of device for electromagnetic separation (EMS) was designed and applied to process the continuous flowing melt. Tensile test was employed to compare effect of electromagnetic separation with that of the traditio...A set of device for electromagnetic separation (EMS) was designed and applied to process the continuous flowing melt. Tensile test was employed to compare effect of electromagnetic separation with that of the traditional processes. Compared with filtration by ceramic foam filter and process without filtration, multiple process combined with filtration and electromagnetic separation can effectively remove most of inclusions with diameter finer than 10 μm in A356 alloy casting, hence improve its tensile properties. After being processed by electromagnetic filtration, the tensile strength of A356 scrap is enhanced by 8.27%, approaching the level of fresh A356 alloy.展开更多
Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles...Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.展开更多
High harmonic generation(HHG) driven by intense frequency-comb laser fields can be dramatically enhanced via multiphoton resonance by tuning the carrier-envelope phase(CEP) shift, without increasing the driving in...High harmonic generation(HHG) driven by intense frequency-comb laser fields can be dramatically enhanced via multiphoton resonance by tuning the carrier-envelope phase(CEP) shift, without increasing the driving intensity. However,the multiphoton-resonant enhancement(MRE) factor in the realistic atomic hydrogen is much smaller than that in a twolevel system. To study the deviation, we present a theoretical investigation of the multiphoton resonance dynamics of three-level systems driven by intense frequency-comb laser fields. The many-mode Floquet theorem(MMFT) is employed to provide a nonperturbative and exact treatment of the interaction between the quantum system and the laser fields. The investigations show that the dipole interaction of a two-level system with the third level affects the multiphoton resonance dynamics and enhances the HHG spectra. It is the dipole interaction of the excited level of the two-level system with other levels that results in the smaller MRE factor in the realistic atomic system.展开更多
The frequency-comb structure in the extreme ultraviolet(XUV) and vacuum ultraviolet(VUV) regions can be realized by the high-order harmonic generation(HHG) process driven by frequency-comb fields, providing an a...The frequency-comb structure in the extreme ultraviolet(XUV) and vacuum ultraviolet(VUV) regions can be realized by the high-order harmonic generation(HHG) process driven by frequency-comb fields, providing an alternative approach for the measurement of an unknown frequency in XUV or VUV. We consider the case of two driving frequency-comb fields with the same repetition frequency and the carrier frequencies of fundamental-and third-harmonics, respectively.The many-mode Floquet theorem(MMFT) is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and the frequency-comb laser fields. Multiphoton transition paths involving both fundamentaland third-harmonic photons are opened due to the coupling of the third-harmonic frequency-comb field. The multiphoton transition paths are superpositioned when the carrier-envelope-phase shifts(CEPs) fulfill the matching condition. And the interference of the multiphoton transition paths can be controlled by tuning the relative envelope delay between the fields.We find that the quasienergy structure, as well as the multiphoton resonant high-order harmonic generation(HHG) spectra,driven by the two frequency-comb fields can be coherently controlled via the interference of multiphoton transition paths.It is also found that the spectral intensities of the generated harmonics can be modulated, and the modulation behavior is harmonic-sensitive.展开更多
The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on...The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.展开更多
The section shape of an assembled magnetic medium is the most important structural parameter of a high gradient magnetic separator, which directly affects the induction distribution and magnetic field gradient of the ...The section shape of an assembled magnetic medium is the most important structural parameter of a high gradient magnetic separator, which directly affects the induction distribution and magnetic field gradient of the magnetic separator. In this study, equilateral triangle, square, hexagonal, octagon, dodecagon, and round shape sections of the assembled magnetic medium are chosen to study their influence on magnetic field distribution characteristics using the ANSYS analysis. This paper utilizes a single assembled magnetic medium to understand the relationship between the geometry of the assembled magnetic medium and its magnetic field distribution characteristics. The results show that high magnetic field,regional field, magnetic field gradient, and magnetic force formed by the different sections of the assembled magnetic medium in the same background magnetic field reduce in turn based on the triangle,square, hexagonal, octagon, dodecagon, and round. Based on the magnetic field characteristics analytic results, the magnetic separation tests of the ilmenite are carried out. The results indicate that the section shape of the toothed plate compared with the section shape of cylinder can improve the recovery of ilmenite up to 45% in the same magnetizing current condition of 2A, which is consistent with magnetic field characteristics analysis of different assembled magnetic medium section shapes.展开更多
All-position welding is an important technology in energy sources, chemical, shipbuilding and other industries. When welding current is larger than 200 A, the molten metal tends to flow down due to the force of gravit...All-position welding is an important technology in energy sources, chemical, shipbuilding and other industries. When welding current is larger than 200 A, the molten metal tends to flow down due to the force of gravity. In order to "push" the molten metal into the weld, a new kind of U-frame excitation model, which could produce electromagnetic force to balance the gravity of the molten pool, was designed. The related parameters of the excitation model were simulated by Maxwell 3D, and the relationships between the parameters and the magnetic induction intensity were analyzed. Finally, the electromagnetic force in the molten pool was calculated, and the appropriate parameters of the U-frame excitation model were determined. The results of the simulation verify the feasibility of the all-position welding excitation model.展开更多
The influence of different factors on the plasma chemical reactions is widely studied today. However, insufficient consideration is given to the research of paramagnetic phenomena which takes place in plasma systems. ...The influence of different factors on the plasma chemical reactions is widely studied today. However, insufficient consideration is given to the research of paramagnetic phenomena which takes place in plasma systems. The results of modeling the process of redistribution carbon isotopes between different phases while oxidizing it in high-frequency low-temperature plasma in an external magnetic field are shown in the article. The equilibrium concentrations of components involved in the oxidation process in a plasma system are defined. A principle possibility of isotope-selective plasma chemical reactions in a magnetic field was experimentally determined. The increase of concentration of 13C in the gas phase up to 1.3 times relative to natural abundance was obtained. It was found that the content of the carbon heavy isotope in the gas phase depends on the magnetic field action area. The best results were achieved with the combination of magnetic field impact area and the priority area of the appearance of plasma chemical reactions products.展开更多
This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield...This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.展开更多
Using molten Pb-Sn-Bi alloy, the meniscus shape under high frequency magnetic field of φ100 mm round billet caster was investigated. The effect of some parameters on meniscus shape was studied. The results show that ...Using molten Pb-Sn-Bi alloy, the meniscus shape under high frequency magnetic field of φ100 mm round billet caster was investigated. The effect of some parameters on meniscus shape was studied. The results show that for a mold with 12 segments, the meniscus shape is relatively stable. With increasing power input, the menis- cus height increases with intensification of fluctuation. For the given caster, the reasonable power input is about 70 kW. The coil should be near to the top of mold and/or the initial meniscus should be near to the center of the coil. The lower the frequency, the higher is the meniscus height. With increasing frequency, the free surface is more flattened and meniscus becomes more stable. In practice, the power input should be increased simultaneously with frequency. The optimal frequency is about 20 kHz.展开更多
The parametric instability behavior of a liquid mercury sessile drop under high frequency Amplitude-Modulate Magnetic Field(AMMF),i.e.a high frequency magnetic field(carder wave)modulated by a low frequency sine wave(...The parametric instability behavior of a liquid mercury sessile drop under high frequency Amplitude-Modulate Magnetic Field(AMMF),i.e.a high frequency magnetic field(carder wave)modulated by a low frequency sine wave(modulate wave),is investigated experimentally.The free surface contour of the mercury drop is observed by a CCD camera while varying the frequency and amplitude of the high frequency AMMF.At a given frequency and amplitude,the edge deformations with an azimuthal wave numbers(modes n=3,4,5,6)were excited.展开更多
The HT-6M tokamak at the Thailand Institute of Nuclear Technology has been restarted.In order to ensure the smooth breakdown of plasma and obtain plasma discharge parameters,optimization of the poloidal field coils an...The HT-6M tokamak at the Thailand Institute of Nuclear Technology has been restarted.In order to ensure the smooth breakdown of plasma and obtain plasma discharge parameters,optimization of the poloidal field coils and upgrade of the magnetic diagnostics are described in this article.A perfect null field(stray field in the main chamber<10 G)is obtained using an ohmic heating field.To obtain important information about the plasma,an external magnetic diagnostics system is designed and calibrated,including a Rogowski coil(measuring plasma current),a magnetic probe(measuring external field),diamagnetic loops(measuringβ_(p))and so on.In order to realize high-frequency signal measurement and transmission,a series of frequency responses with the magnetic probe and transmission line are tested.Later,to verify the null field,a fitting code is developed to reconstruct the stray field in the vacuum chamber based on magnetic probe measurements and flux loops.The results show that the error is within 1.5%.This indicates the accuracy of the magnetic measurement system and ensures the preparation for the breakdown of plasma.展开更多
高频变压器为功率变换器的核心磁性元件,利用仿真软件对高频变压器进行电磁场仿真分析,可以节省设计时间、优化结构、提高效率。在对电磁场和温度场的控制方程、边界条件进行详细分析的基础上,建立高频变压器电磁场—温度场耦合计算流...高频变压器为功率变换器的核心磁性元件,利用仿真软件对高频变压器进行电磁场仿真分析,可以节省设计时间、优化结构、提高效率。在对电磁场和温度场的控制方程、边界条件进行详细分析的基础上,建立高频变压器电磁场—温度场耦合计算流程。利用Infolytica的MagNet和ThermNet仿真软件,对一台5 k Hz/15 kW纳米晶合金磁芯三相五柱式高频变压器的漏磁场、磁芯损耗、绕组损耗和温度场进行有限元法计算,开展空载和短路实验研究,验证计算方法的准确性。展开更多
基金financially supported by the National Key Research and Development Program of China(Grant No.2017YFB0305504)。
文摘The effects of two types of magnetic fields,namely harmonic magnetic field(HMF)and pulse magnetic field(PMF)on magnetic flux density,Lorentz force,temperature field,and microstructure of high purity Cu were studied by numerical simulation and experiment during electromagnetic direct chill casting.The magnetic field is induced by a magnetic generation system including an electromagnetic control system and a cylindrical crystallizer of 300 mm in diameter equipped with excitation coils.A comprehensive mathematical model for high purity Cu electromagnetic casting was established in finite element method.The distributions of magnetic flux density and Lorentz force generated by the two magnetic fields were acquired by simulation and experimental measurement.The microstructure of billets produced by HMF and PMF casting was compared.Results show that the magnetic flux density and penetrability of PMF are significantly higher than those of HMF,due to its faster variation in transient current and higher peak value of magnetic flux density.In addition,PMF drives a stronger Lorentz force and deeper penetration depth than HMF does,because HMF creates higher eddy current and reverse electromagnetic field which weakens the original electromagnetic field.The microstructure of a billet by HMF is composed of columnar structure regions and central fine grain regions.By contrast,the billet by PMF has a uniform microstructure which is characterized by ultra-refined and uniform grains because PMF drives a strong dual convection,which increases the uniformity of the temperature field,enhances the impact of the liquid flow on the edge of the liquid pool and reduces the curvature radius of liquid pool.Eventually,PMF shows a good prospect for industrialization.
基金Projects(50474055, 50274018) supported by the National Natural Science Foundation of ChinaProject (20052176) supported by the Natural Science Foundation of Liaoning Province, China
文摘The effects of separation time and magnetic induction intensity on the separation efficiency of alumina particles with diameters varying from 30 to 200 μm in aluminum melt were investigated. The experimental results show that the particle-accumulated layer is formed in the periphery of the solidified specimen when the diameter of the separated molten metal, the magnetic induction intensity and the separation time are 10 mm, 0.04 T and 1 s, respectively. When the separation time is 2 s, the particle-accumulated layer can be observed obviously and the separation efficiency is about 80%. There are few alumina particles in the inner of the solidified specimen when the separation time is 3 s. The separation efficiency higher than 85% can be achieved when the separation time is longer than 3 s. When the magnetic induction intensity is 0.06 T, the visible particle-accumulated layer can be formed in 1 s and the separation efficiency is higher than 95%. The experimental results were compared with the calculated results at last.
基金Projects(50474055, 50274018) supported by the National Natural Science Foundation of China Project(20052176) supported by the Natural Science Foundation of Liaoning Province, China
文摘The results of experiments and simulations show that there is a turbulent flow in the molten aluminum and it is hard to be restrained in the thin tubule (diameter of 6 mm) when the electromagnetic body force is applied. The electromagnetic elimination experimental results show that the flow has serious effect on the elimination of 5 μm alumina inclusions, but has little effect on the 30 μm and 100 μm primary silicon. The effects of the electromagnetic field and the turbulent flow on the electromagnetic elimination are discussed.
基金This paper is supported by the National "863" Program in the Tenth Five-Year-Plan (No. 2002AA615020)Eleventh Five-Year-Plan (No. 2006AA09A201)the Focused Subject Program of Beijing (No. XK104910598).
文摘Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to complete measurements. To protect the magnetic field sensors from intense erosion and high pressure, suitable high-pressure sealed cabins must be designed to load them. For the consideration of magnetic measurement and marine operation, the sealed pressure cabin should be nonmagnetic and transportable. Among all optional materials, LC4 super.hard aluminum alloy has the highest performance of price/quality ratio to make the sealed pressure cabin. However, it does not mean that the high-pressure sealed cabin made using LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure cabin made using LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect does not affect the use of the magnetic field sensor, but if we want to eliminate its effect, we should study it by experimental measurements. In our experiment tests, frequency sweep magnetic field as excitation signal was used, and then responses of the magnetic field sensor before and after being loaded into the high-pressure sealed cabin were measured. Finally, normalized abnormal curves for the frequency responses were obtained, through which we could show how the high-pressure sealed cabin produces effects on the responses of the magnetic field sensor. Experimental results suggest that the response distortion induced by the sealed pressure cabin appears on mid- and high-frequency areas. Using experimental results as standardization data, the frequency responses collected from seafloor magnetotelluric measurements can be corrected to restore real information about the seafloor field source.
文摘A set of device for electromagnetic separation (EMS) was designed and applied to process the continuous flowing melt. Tensile test was employed to compare effect of electromagnetic separation with that of the traditional processes. Compared with filtration by ceramic foam filter and process without filtration, multiple process combined with filtration and electromagnetic separation can effectively remove most of inclusions with diameter finer than 10 μm in A356 alloy casting, hence improve its tensile properties. After being processed by electromagnetic filtration, the tensile strength of A356 scrap is enhanced by 8.27%, approaching the level of fresh A356 alloy.
基金Projects(50674018, 50474055) supported by the National Natural Science Foundation of China
文摘Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374239,21203144,and 11074199)the Doctoral Fund of Ministry of Education of China(Grant No.20120201120056)the Fundamental Research Funds for the Central Universities,China
文摘High harmonic generation(HHG) driven by intense frequency-comb laser fields can be dramatically enhanced via multiphoton resonance by tuning the carrier-envelope phase(CEP) shift, without increasing the driving intensity. However,the multiphoton-resonant enhancement(MRE) factor in the realistic atomic hydrogen is much smaller than that in a twolevel system. To study the deviation, we present a theoretical investigation of the multiphoton resonance dynamics of three-level systems driven by intense frequency-comb laser fields. The many-mode Floquet theorem(MMFT) is employed to provide a nonperturbative and exact treatment of the interaction between the quantum system and the laser fields. The investigations show that the dipole interaction of a two-level system with the third level affects the multiphoton resonance dynamics and enhances the HHG spectra. It is the dipole interaction of the excited level of the two-level system with other levels that results in the smaller MRE factor in the realistic atomic system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504288,11374239,11534008,and 91536115)the Fundamental Research Funds for the Central Universities,China
文摘The frequency-comb structure in the extreme ultraviolet(XUV) and vacuum ultraviolet(VUV) regions can be realized by the high-order harmonic generation(HHG) process driven by frequency-comb fields, providing an alternative approach for the measurement of an unknown frequency in XUV or VUV. We consider the case of two driving frequency-comb fields with the same repetition frequency and the carrier frequencies of fundamental-and third-harmonics, respectively.The many-mode Floquet theorem(MMFT) is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and the frequency-comb laser fields. Multiphoton transition paths involving both fundamentaland third-harmonic photons are opened due to the coupling of the third-harmonic frequency-comb field. The multiphoton transition paths are superpositioned when the carrier-envelope-phase shifts(CEPs) fulfill the matching condition. And the interference of the multiphoton transition paths can be controlled by tuning the relative envelope delay between the fields.We find that the quasienergy structure, as well as the multiphoton resonant high-order harmonic generation(HHG) spectra,driven by the two frequency-comb fields can be coherently controlled via the interference of multiphoton transition paths.It is also found that the spectral intensities of the generated harmonics can be modulated, and the modulation behavior is harmonic-sensitive.
基金Supported by the National Natural Science Foundation of China(50635040)~~
文摘The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.
基金provided by the Postdoctoral Science Foundation of China(No.2013M542076)the self-determined and innovative research funds of WUT(No.2014-IV-069)the Ministry of Science and Technology of China(No.2011BAB05B01)
文摘The section shape of an assembled magnetic medium is the most important structural parameter of a high gradient magnetic separator, which directly affects the induction distribution and magnetic field gradient of the magnetic separator. In this study, equilateral triangle, square, hexagonal, octagon, dodecagon, and round shape sections of the assembled magnetic medium are chosen to study their influence on magnetic field distribution characteristics using the ANSYS analysis. This paper utilizes a single assembled magnetic medium to understand the relationship between the geometry of the assembled magnetic medium and its magnetic field distribution characteristics. The results show that high magnetic field,regional field, magnetic field gradient, and magnetic force formed by the different sections of the assembled magnetic medium in the same background magnetic field reduce in turn based on the triangle,square, hexagonal, octagon, dodecagon, and round. Based on the magnetic field characteristics analytic results, the magnetic separation tests of the ilmenite are carried out. The results indicate that the section shape of the toothed plate compared with the section shape of cylinder can improve the recovery of ilmenite up to 45% in the same magnetizing current condition of 2A, which is consistent with magnetic field characteristics analysis of different assembled magnetic medium section shapes.
基金This work was supported by the National Natural Science Foundation of China (No. 51075299).
文摘All-position welding is an important technology in energy sources, chemical, shipbuilding and other industries. When welding current is larger than 200 A, the molten metal tends to flow down due to the force of gravity. In order to "push" the molten metal into the weld, a new kind of U-frame excitation model, which could produce electromagnetic force to balance the gravity of the molten pool, was designed. The related parameters of the excitation model were simulated by Maxwell 3D, and the relationships between the parameters and the magnetic induction intensity were analyzed. Finally, the electromagnetic force in the molten pool was calculated, and the appropriate parameters of the U-frame excitation model were determined. The results of the simulation verify the feasibility of the all-position welding excitation model.
文摘The influence of different factors on the plasma chemical reactions is widely studied today. However, insufficient consideration is given to the research of paramagnetic phenomena which takes place in plasma systems. The results of modeling the process of redistribution carbon isotopes between different phases while oxidizing it in high-frequency low-temperature plasma in an external magnetic field are shown in the article. The equilibrium concentrations of components involved in the oxidation process in a plasma system are defined. A principle possibility of isotope-selective plasma chemical reactions in a magnetic field was experimentally determined. The increase of concentration of 13C in the gas phase up to 1.3 times relative to natural abundance was obtained. It was found that the content of the carbon heavy isotope in the gas phase depends on the magnetic field action area. The best results were achieved with the combination of magnetic field impact area and the priority area of the appearance of plasma chemical reactions products.
文摘This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.
文摘Using molten Pb-Sn-Bi alloy, the meniscus shape under high frequency magnetic field of φ100 mm round billet caster was investigated. The effect of some parameters on meniscus shape was studied. The results show that for a mold with 12 segments, the meniscus shape is relatively stable. With increasing power input, the menis- cus height increases with intensification of fluctuation. For the given caster, the reasonable power input is about 70 kW. The coil should be near to the top of mold and/or the initial meniscus should be near to the center of the coil. The lower the frequency, the higher is the meniscus height. With increasing frequency, the free surface is more flattened and meniscus becomes more stable. In practice, the power input should be increased simultaneously with frequency. The optimal frequency is about 20 kHz.
基金Item Sponsored by National Natural Science Foundation of China (No.59874133) Creation Foundation of Shanghai Educational Committee (No.10YZ16)
文摘The parametric instability behavior of a liquid mercury sessile drop under high frequency Amplitude-Modulate Magnetic Field(AMMF),i.e.a high frequency magnetic field(carder wave)modulated by a low frequency sine wave(modulate wave),is investigated experimentally.The free surface contour of the mercury drop is observed by a CCD camera while varying the frequency and amplitude of the high frequency AMMF.At a given frequency and amplitude,the edge deformations with an azimuthal wave numbers(modes n=3,4,5,6)were excited.
基金Project supported by the National MCF Energy Research and Development Program of China(Grant Nos.2018YFE0302100 and 2018YFE0301105)the National Natural Science Foundation of China(Grant No.11875291)the Comprehensive Research Facility for Fusion Technology Program of China(Grant No.2018-000052-73-01001228)
文摘The HT-6M tokamak at the Thailand Institute of Nuclear Technology has been restarted.In order to ensure the smooth breakdown of plasma and obtain plasma discharge parameters,optimization of the poloidal field coils and upgrade of the magnetic diagnostics are described in this article.A perfect null field(stray field in the main chamber<10 G)is obtained using an ohmic heating field.To obtain important information about the plasma,an external magnetic diagnostics system is designed and calibrated,including a Rogowski coil(measuring plasma current),a magnetic probe(measuring external field),diamagnetic loops(measuringβ_(p))and so on.In order to realize high-frequency signal measurement and transmission,a series of frequency responses with the magnetic probe and transmission line are tested.Later,to verify the null field,a fitting code is developed to reconstruct the stray field in the vacuum chamber based on magnetic probe measurements and flux loops.The results show that the error is within 1.5%.This indicates the accuracy of the magnetic measurement system and ensures the preparation for the breakdown of plasma.
基金supported by the National Natural Science Foundation of China (Nos.51690163,52174375)the Fund of the State Key Laboratory of Solidification Processing in NWPU,China (No.2021-TS-01)+1 种基金the Innovation Capability Support Program of Shaanxi Province,China (No.2020KJXX-073)the Fundamental Research Funds for the Central Universities,China.
文摘高频变压器为功率变换器的核心磁性元件,利用仿真软件对高频变压器进行电磁场仿真分析,可以节省设计时间、优化结构、提高效率。在对电磁场和温度场的控制方程、边界条件进行详细分析的基础上,建立高频变压器电磁场—温度场耦合计算流程。利用Infolytica的MagNet和ThermNet仿真软件,对一台5 k Hz/15 kW纳米晶合金磁芯三相五柱式高频变压器的漏磁场、磁芯损耗、绕组损耗和温度场进行有限元法计算,开展空载和短路实验研究,验证计算方法的准确性。