High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication n...High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication network(HFCN) in this paper.First, we present the benefits and the challenges by introducing diversity technology into the existing HFCN. Secondly, to exploit the benefits fully and overcome the challenges, we propose a system structure suitable for deploying diversity technology in HFCN in large scale,based on the cloud radio access network and software defined network. Moreover, we present a general structure for the real-time updating frequency management system that plays a more important role especially when resource consuming(e.g., frequency) diversity technology is deployed. Thirdly, we investigate the key techniques enabling diversity technology deployment. Finally, we point out the future research directions to help the HFCN with diversity work more efficiently and intelligently.展开更多
The mechanism of acoustic radiation from the boundary layer of an axisymmetric body is analyzed, and its sound pressure spectrum is predicted. It is shown that the acoustic radiation results from the transition region...The mechanism of acoustic radiation from the boundary layer of an axisymmetric body is analyzed, and its sound pressure spectrum is predicted. It is shown that the acoustic radiation results from the transition region and the turbulent boundary layer; and that the acoustic radiation from transition region is predominant at low frequencies; while the turbulent boundary layer has the decisive effect on acoustic radiation at high frequencies. The calculated values are in good agreement with the experimental data.展开更多
针对高速移动场景中人机混编通信模式下的安全问题展开研究,提出基于时延多普勒(Delay Doppler, DD)域密钥提取的正交时频空—物理层加密(Orthogonal Time Frequency Space-Physical Layer Encryption, OTFS-PLE)方法。该方法充分利用...针对高速移动场景中人机混编通信模式下的安全问题展开研究,提出基于时延多普勒(Delay Doppler, DD)域密钥提取的正交时频空—物理层加密(Orthogonal Time Frequency Space-Physical Layer Encryption, OTFS-PLE)方法。该方法充分利用快时变信道在DD域中的稀疏性,高效准确地估计信道路径的增益、多普勒频移和时延大小,生成安全可靠的初始密钥,再通过Tent序列将初始密钥扩展成加密密钥,根据密钥对OTFS的星座点进行相位扰乱,实现高效的加解密。该方法解决了高速移动场景人机混编通信中的密钥提取难的问题,能生成可靠的密钥并实现人机混编系统安全高效的加密通信。展开更多
基金supported by the National Science Foundation of China under Grants No. 61801492 and No. 61601490a national major specific project governed by the national development and reform commission of China
文摘High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication network(HFCN) in this paper.First, we present the benefits and the challenges by introducing diversity technology into the existing HFCN. Secondly, to exploit the benefits fully and overcome the challenges, we propose a system structure suitable for deploying diversity technology in HFCN in large scale,based on the cloud radio access network and software defined network. Moreover, we present a general structure for the real-time updating frequency management system that plays a more important role especially when resource consuming(e.g., frequency) diversity technology is deployed. Thirdly, we investigate the key techniques enabling diversity technology deployment. Finally, we point out the future research directions to help the HFCN with diversity work more efficiently and intelligently.
文摘The mechanism of acoustic radiation from the boundary layer of an axisymmetric body is analyzed, and its sound pressure spectrum is predicted. It is shown that the acoustic radiation results from the transition region and the turbulent boundary layer; and that the acoustic radiation from transition region is predominant at low frequencies; while the turbulent boundary layer has the decisive effect on acoustic radiation at high frequencies. The calculated values are in good agreement with the experimental data.
文摘针对高速移动场景中人机混编通信模式下的安全问题展开研究,提出基于时延多普勒(Delay Doppler, DD)域密钥提取的正交时频空—物理层加密(Orthogonal Time Frequency Space-Physical Layer Encryption, OTFS-PLE)方法。该方法充分利用快时变信道在DD域中的稀疏性,高效准确地估计信道路径的增益、多普勒频移和时延大小,生成安全可靠的初始密钥,再通过Tent序列将初始密钥扩展成加密密钥,根据密钥对OTFS的星座点进行相位扰乱,实现高效的加解密。该方法解决了高速移动场景人机混编通信中的密钥提取难的问题,能生成可靠的密钥并实现人机混编系统安全高效的加密通信。