The high-temperature friction and wear properties of TiAl alloys and Ti2AlN/TiAl composites (TTC) in contact with nickel-based superalloy were studied. The results showed that, at 800 and 1 000 ℃, the coefficient o...The high-temperature friction and wear properties of TiAl alloys and Ti2AlN/TiAl composites (TTC) in contact with nickel-based superalloy were studied. The results showed that, at 800 and 1 000 ℃, the coefficient of the friction (COF) decreased with the increase of sliding velocity and the wear loss of the TTC decreased with the increase of volume fraction of Ti2AlN. The wear mechanisms of the pairs are adhesive wear and the wear debris mainly comes from the contacting nickel-based superalloy. The intergranular fracture and the cracking of the phase boundary in the lamellar structure are the wear mode of TiAl alloy. The wear mode of TTC is phase boundary fracture and adhesive spalling. The abrasive resistance of TTC is slightly higher than that of TiAl alloy.展开更多
In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composi...In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45#steel>μHigh chromium cast iron/45#steel>μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.展开更多
Ni-20Cr powders mixed with tungsten,aluminum,titanium,and different contents of molybdenum disulfides were hot-pressed in graphite mould by powder metallurgy method. Their tribological properties from room temperature...Ni-20Cr powders mixed with tungsten,aluminum,titanium,and different contents of molybdenum disulfides were hot-pressed in graphite mould by powder metallurgy method. Their tribological properties from room temperature to 600 ℃ and mechanical properties at atmosphere were tested. The results show that the hardness and anti-bending strength of composites increase by more than 20% when containing 6%(mass fraction) MoS2. But when molybdenum disulfide content exceeds 6%,the hardness and anti-bending strength will decrease gradually. The addition of MoS2 is favored to the reduction of friction coefficient of composite. The friction coefficient of composite decreases with the increase of molybdenum disulfide until the percentage of lubricant reaches 12%. In excess of this value,the friction coefficient value starts to ascend. The wear rates of composite with molybdenum disulfide are one order of magnitude lower than the alloy without lubricant. When the addition amount of MoS2 is in the range of 6% and 12%,the wear rates keep at the resemble level.展开更多
Solid lubricants lead to substantial weight savings relative to the use of liquid lubricant, especially in the weight-conscious aerospace industry. A new PTFE-Al alloy composite(A) containing 60% area proportion of PT...Solid lubricants lead to substantial weight savings relative to the use of liquid lubricant, especially in the weight-conscious aerospace industry. A new PTFE-Al alloy composite(A) containing 60% area proportion of PTFE composite was developed. Another type of common metal-plastics multilayer composite, also called DU, was selected for a comparative investigation. Friction and wear tests were carried out in an oscillating sliding tribotester in air at an oscillating frequency of 0.13Hz and contact mean pressures from 10 to 80MPa. The composites slid against a 38CrMoAlA steel shaft. The results show that the composite A exhibits low coefficient of dry sliding friction less than 0.1 and long wear life of 2000m. This is because the composite A can provide a sufficient solid lubrication during the whole tests. SEM examination of the transfer films for the composite A confirms that uniform, thin and (coherent) transfer films are prerequisites for low friction and good wear resistance.展开更多
Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by...Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing.展开更多
A 17 vol%SiCp/Al–Mg–Si–Cu composite plate with a thickness of 3 mm was successfully friction stir welded(FSWed)at a very high welding speed of 2000 mm/min for the first time.Microstructural observation indicated th...A 17 vol%SiCp/Al–Mg–Si–Cu composite plate with a thickness of 3 mm was successfully friction stir welded(FSWed)at a very high welding speed of 2000 mm/min for the first time.Microstructural observation indicated that the coarsening of the precipitates was greatly inhibited in the heat-affected zone of the FSW joint at high welding speed,due to the significantly reduced peak temperature and duration at high temperature.Therefore,prominent enhancement of the hardness was achieved at the lowest hardness zone of the FSW joint at this high welding speed,which was similar to that of the nugget zone.Furthermore,the ultimate tensile strength of the joint was as high as 369 MPa,which was much higher than that obtained at low welding speed of 100 mm/min(298 MPa).This study provides an effective method to weld aluminum matrix composite with superior quality and high welding efficiency.展开更多
T6-treated 20 wt% B4 Cp/6061 Al sheets were joined under welding speeds of 400–1200 mm/min by friction stir welding(FSW) with a threaded cermet pin. The macro-defect-free FSW joints could be achieved at high welding ...T6-treated 20 wt% B4 Cp/6061 Al sheets were joined under welding speeds of 400–1200 mm/min by friction stir welding(FSW) with a threaded cermet pin. The macro-defect-free FSW joints could be achieved at high welding speeds up to 1200 mm/min, but larger plunge depth was required at the welding speeds of 800 and 1200 mm/min to eliminate the tunnel defect. In the nugget zone(NZ) of the joints, the B4 C particles were broken up and uniformly redistributed. The NZ exhibited lower hardness than the base metal(BM), and the hardness value almost did not change with increasing welding speed, attributable to the dissolution of precipitates. Compared with the BM, the joints showed lower tensile strength. As the welding speed increased from 400 to 800 mm/min, the joint efficiencies were nearly the same and up to ~ 73%. When the welding speed increased up to 1200 mm/min, the tensile strength significantly decreased, due to the occurrence of kissing bond defect at the bottom of the NZ. With increasing welding speed, the fracture location of the joints transferred gradually from the heat-affected zone to the NZ due to the kissing bond defects.展开更多
Using the hoop-lump experimental machine, I have studied three kinds of high-strengthcomposites(s1,s2,s3) made in my company. They were rub against 45# steel separately under theconditions of dry-friction, water solut...Using the hoop-lump experimental machine, I have studied three kinds of high-strengthcomposites(s1,s2,s3) made in my company. They were rub against 45# steel separately under theconditions of dry-friction, water solution and 40# machine oil. The results show that under the con-dition of oil-lubrication, the wear-proof performance of the high strength composites has been ap-parently improved. Their coefficient of friction dropped one order of magnitude than under the con-dition of dry-friction or water solution friction. Their rates of wear dropped 1-2 order of magnitude.S2 is the best one. Studying the tribology performance of S2 under the condition of coal mud, wefound the coefficient of friction of S2 was below 0.2. Under the load of p=100N, its performance isbetter.The mechanical property test also shows that the high strength composites are superior All thetests show: The quantities, sizes and distribution of the strength composites have a better scope of ap-por-tion and proportion. More importantly, the results of the above test to tribology performance of thehigh strength composites will efficiently guide the production.展开更多
文摘The high-temperature friction and wear properties of TiAl alloys and Ti2AlN/TiAl composites (TTC) in contact with nickel-based superalloy were studied. The results showed that, at 800 and 1 000 ℃, the coefficient of the friction (COF) decreased with the increase of sliding velocity and the wear loss of the TTC decreased with the increase of volume fraction of Ti2AlN. The wear mechanisms of the pairs are adhesive wear and the wear debris mainly comes from the contacting nickel-based superalloy. The intergranular fracture and the cracking of the phase boundary in the lamellar structure are the wear mode of TiAl alloy. The wear mode of TTC is phase boundary fracture and adhesive spalling. The abrasive resistance of TTC is slightly higher than that of TiAl alloy.
基金supported by the Special Important Technology of Guangdong Province,China(2009A080304010,2011A080802003)the Core Technology Research and Strategic Emerging Industries of Guangdong Province,China(2012A090100018)
文摘In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45#steel>μHigh chromium cast iron/45#steel>μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.
基金Project(BG2007046) supported by the High Technology Research of Jiangsu ProvinceProject(06-A-044) supported by the "Six Kinds of Excellent Peak" of Personnel Office of Jiangsu ProvinceProject(JHB06-04) supported by the College Scientific Research Production Translation of Jiangsu Educational Office
文摘Ni-20Cr powders mixed with tungsten,aluminum,titanium,and different contents of molybdenum disulfides were hot-pressed in graphite mould by powder metallurgy method. Their tribological properties from room temperature to 600 ℃ and mechanical properties at atmosphere were tested. The results show that the hardness and anti-bending strength of composites increase by more than 20% when containing 6%(mass fraction) MoS2. But when molybdenum disulfide content exceeds 6%,the hardness and anti-bending strength will decrease gradually. The addition of MoS2 is favored to the reduction of friction coefficient of composite. The friction coefficient of composite decreases with the increase of molybdenum disulfide until the percentage of lubricant reaches 12%. In excess of this value,the friction coefficient value starts to ascend. The wear rates of composite with molybdenum disulfide are one order of magnitude lower than the alloy without lubricant. When the addition amount of MoS2 is in the range of 6% and 12%,the wear rates keep at the resemble level.
文摘Solid lubricants lead to substantial weight savings relative to the use of liquid lubricant, especially in the weight-conscious aerospace industry. A new PTFE-Al alloy composite(A) containing 60% area proportion of PTFE composite was developed. Another type of common metal-plastics multilayer composite, also called DU, was selected for a comparative investigation. Friction and wear tests were carried out in an oscillating sliding tribotester in air at an oscillating frequency of 0.13Hz and contact mean pressures from 10 to 80MPa. The composites slid against a 38CrMoAlA steel shaft. The results show that the composite A exhibits low coefficient of dry sliding friction less than 0.1 and long wear life of 2000m. This is because the composite A can provide a sufficient solid lubrication during the whole tests. SEM examination of the transfer films for the composite A confirms that uniform, thin and (coherent) transfer films are prerequisites for low friction and good wear resistance.
基金supported by the Basque Government(Eusko Jaurlaritza)(Nos.KK-2022/00080 Minaku,KK-2022/00070 Edison)tthe Spanish Ministry of Science and Innovation(Nos.PID2019-109220RB-I00 Alasurf,PDC2021-121042-I00 EHU-Coax)the Basque Government(Eusko Jaurlaritza)in call IT 1573-22 for the financial support of the research group.
文摘Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing.
基金supported by the National Key R&D Program of China (No. 2017YFB0703104)National Natural Science Foundation of China (Nos. 51331008 and 51671191)
文摘A 17 vol%SiCp/Al–Mg–Si–Cu composite plate with a thickness of 3 mm was successfully friction stir welded(FSWed)at a very high welding speed of 2000 mm/min for the first time.Microstructural observation indicated that the coarsening of the precipitates was greatly inhibited in the heat-affected zone of the FSW joint at high welding speed,due to the significantly reduced peak temperature and duration at high temperature.Therefore,prominent enhancement of the hardness was achieved at the lowest hardness zone of the FSW joint at this high welding speed,which was similar to that of the nugget zone.Furthermore,the ultimate tensile strength of the joint was as high as 369 MPa,which was much higher than that obtained at low welding speed of 100 mm/min(298 MPa).This study provides an effective method to weld aluminum matrix composite with superior quality and high welding efficiency.
基金support of the National Natural Science Foundation of China under Grant Nos.U1508216 and 51771194the National Key R&R Program of China under grant No.2017YFB0703100.
文摘T6-treated 20 wt% B4 Cp/6061 Al sheets were joined under welding speeds of 400–1200 mm/min by friction stir welding(FSW) with a threaded cermet pin. The macro-defect-free FSW joints could be achieved at high welding speeds up to 1200 mm/min, but larger plunge depth was required at the welding speeds of 800 and 1200 mm/min to eliminate the tunnel defect. In the nugget zone(NZ) of the joints, the B4 C particles were broken up and uniformly redistributed. The NZ exhibited lower hardness than the base metal(BM), and the hardness value almost did not change with increasing welding speed, attributable to the dissolution of precipitates. Compared with the BM, the joints showed lower tensile strength. As the welding speed increased from 400 to 800 mm/min, the joint efficiencies were nearly the same and up to ~ 73%. When the welding speed increased up to 1200 mm/min, the tensile strength significantly decreased, due to the occurrence of kissing bond defect at the bottom of the NZ. With increasing welding speed, the fracture location of the joints transferred gradually from the heat-affected zone to the NZ due to the kissing bond defects.
文摘Using the hoop-lump experimental machine, I have studied three kinds of high-strengthcomposites(s1,s2,s3) made in my company. They were rub against 45# steel separately under theconditions of dry-friction, water solution and 40# machine oil. The results show that under the con-dition of oil-lubrication, the wear-proof performance of the high strength composites has been ap-parently improved. Their coefficient of friction dropped one order of magnitude than under the con-dition of dry-friction or water solution friction. Their rates of wear dropped 1-2 order of magnitude.S2 is the best one. Studying the tribology performance of S2 under the condition of coal mud, wefound the coefficient of friction of S2 was below 0.2. Under the load of p=100N, its performance isbetter.The mechanical property test also shows that the high strength composites are superior All thetests show: The quantities, sizes and distribution of the strength composites have a better scope of ap-por-tion and proportion. More importantly, the results of the above test to tribology performance of thehigh strength composites will efficiently guide the production.