An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to impr...An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.展开更多
A novel high gravity electrochemical reactor with multi-concentric cylindrical electrodes was used in the electrochemical treatment of 5 000 mg/L phenol-containing wastewater at a petrochemical plant, which can operat...A novel high gravity electrochemical reactor with multi-concentric cylindrical electrodes was used in the electrochemical treatment of 5 000 mg/L phenol-containing wastewater at a petrochemical plant, which can operate continuously and process in a large scale. The results show that the high gravity technology used in electrochemical treatment of phenol-containing wastewater can shorten the electrolysis time, decrease the electrolysis voltage, and reduce the energy consumption. The COD removal efficiency was high in the high-gravity field, and reached up to about 48%, which was about 2 times the value achieved in the normal gravity field at a processing capacity of 6 L, a high gravity factor of 80, a voltage of 12 V, an electrolysis time of 40 min, and a wastewater flowrate of 80 L/h.展开更多
The integrated high gravity-ultrasonic/ozonation/electrolysis technology was applied in the pretreatment of wastewater containing nitrobenzene. The effect ofpH value, high gravity factor, liquid flow-rate and electric...The integrated high gravity-ultrasonic/ozonation/electrolysis technology was applied in the pretreatment of wastewater containing nitrobenzene. The effect ofpH value, high gravity factor, liquid flow-rate and electric current density on removal of COD and nitrobenzene compounds was investigated. Experimental results have determined the optimal pro- cess regime involving a high gravity factor of 100, an electric current density of 20 mA/cm2, a liquid flow-rate of 100 L/h, and an initial liquid pH value of 11. After the wastewater had been treated for 180 rain, the degradation of nitrobenzene and COD reached 99% and 80%, respectively, with the biochemical coefficient (BOD/COD) equating to 0.64, and the subse- quent treatment of wastewater could be carried out by conventional biochemical means. Compared with traditional aeration- ozone contactors, a rotating packed bed with high mass transfer characteristics could be used to increase the ozonation treat- ment efficiency.展开更多
The removal of hydrogen sulfide from gas plays an important role in rational utilization of resources and environ- mental protection. In this paper, the process of hydrogen sulfide removal by wet oxidation method in a...The removal of hydrogen sulfide from gas plays an important role in rational utilization of resources and environ- mental protection. In this paper, the process of hydrogen sulfide removal by wet oxidation method in a rotating packed bed was investigated in a scale for treating 10 000 Nm3/h of gas. On the basis of studying the influence of the species and con- centration of alkali source, the liquid/gas volume ratio, the high gravity factor, and the hydrogen sulfide content in feed gas on the desulfurization effect, the suitable technological conditions were obtained. The hydrogen sulfide removal efficiency could reach 98.0% under these conditions. The results of continuous operation of process facilities showed that the high gravity method has many merits including higher desulfurization rate, good stability in operation, lower liquid/gas volume ratio, greater operation elasticity, and apparent energy saving effects.展开更多
The vehicles with high gravity centre are more prone to roll over. The paper deals with a method of dynamics analysis of fire engines which is an example of these types of vehicle. Algorithms for generating the equati...The vehicles with high gravity centre are more prone to roll over. The paper deals with a method of dynamics analysis of fire engines which is an example of these types of vehicle. Algorithms for generating the equations of motion have been formulated by homogenous transformations and Lagrange's equation. The model presented in this article consists of a system of rigid bodies connected one with another forming an open kinematic chain. Road maneuvers such as a lane change and negotiating a circular track have been presented as the main simulations when a car loses its stability. The method has been verified by comparing numerical results with results obtained by experimental measurements performed during road tests.展开更多
The superfine BaCO3 particles were synthesized by high gravity technology with BaCl·2H2O and Na2CO3 as the raw materials. The changes of particle size and morphology were studied by adding different amount of EDT...The superfine BaCO3 particles were synthesized by high gravity technology with BaCl·2H2O and Na2CO3 as the raw materials. The changes of particle size and morphology were studied by adding different amount of EDTA, and rod-like, near-spherical and cylindrical shape BaCO3 were prepared. The BaCO3 particles were analyzed and characterized by TG/SDAT, SEM, XRD and FT-IR. The results indicated that the crystal transformation temperature and decomposition temperature of BaCO3 had increased because of EDTA addition. With the increase of EDTA amount, the shape of BaCO3 changed from irregular rod-like to near-spherical then to cylindrical shape. All different shape BaCO3 adopts orthorhombic crystal systems.展开更多
The recent progress and future prospects for ultra-centrifugal sedimentation in solids are described,mainly involving equipment,miscible systems and compounds.Almost 90%ultracentrifugation experiments were performed o...The recent progress and future prospects for ultra-centrifugal sedimentation in solids are described,mainly involving equipment,miscible systems and compounds.Almost 90%ultracentrifugation experiments were performed on the 1st and 2nd high-temperature ultracentrifuge which is typically operated at temperatures below 500℃ under the maximum centrifugal acceleration up to 106 g.The strong gravitational and temperature fields induce atomic-scale graded structure,grain growth and refinement,and voids accumulation caused by the atomic sedimentation in miscible systems.New structures,properties and substances are produced in some compounds.A new cantilever high-temperature ultracentrifuge with a test temperature up to 1200℃ is under construction at Zhejiang University,making it possible to simulate the composition,microstructure and property evolution of superalloys in the operating environment of aircraft engines.展开更多
Mass production of nanoparticles at low cost has attracted much attention from industrial and academic circles. In this paper, a novel method, the high gravity reactive precipitation (HGRP) technology, of manufacturin...Mass production of nanoparticles at low cost has attracted much attention from industrial and academic circles. In this paper, a novel method, the high gravity reactive precipitation (HGRP) technology, of manufacturing CaCO3 nanoparticles, presently scaled-up to an annual capacity of 10,000 tons, is presented. This paper describes the process principle, the process design and experiments on the syntheses of 15-30 nm CaCO3, 30-50 nm SiO2, 20-30 nm TiO2, 20-60 nm ZnO, 20-30 nm ZnS, 30 nm SrCO3, 40-70 nm BaTiO3, stick-like nano BaCO3 as well as nano-fibrillar aluminum hydroxide measuring 1-10 nm in diameter and 50-300 nm in length, using liquid-liquid, gas-liquid and gas-liquid-solid reactant systems. The advantage of using the HGRP technology is illustrated by comparison to conventional methods.展开更多
Fast chemical reactions involved in nanomaterials synthesis, polymerization, special chemicals production, reactive absorption, etc., are often difficult to control in terms of product quality, process efficiency and ...Fast chemical reactions involved in nanomaterials synthesis, polymerization, special chemicals production, reactive absorption, etc., are often difficult to control in terms of product quality, process efficiency and production consistency. After a theoretical analysis on such processes based on chemical reaction engineering fundamentals, an idea to intensify micromixing (mixing on the molecular scale) and mass transfer and therefore to control the process ideally was proposed. By experimental investigations of mass transfer and micromixing characteristics in the Rotating Packed Bed (RPB, or 'HIGEE' device), we achieved unique intense micromixing. This led us to the invention of using RPB as a reactor for the fabrication of nanoparticles (Chen et al., 2000).展开更多
In this work,we report an innovative route for the synthesis of rare-earth doped calcium molybdate(CaMoO4)nanophosphors by using high gravity rotating packed bed(RPB)technology and paraffin liquid as the solvent.The s...In this work,we report an innovative route for the synthesis of rare-earth doped calcium molybdate(CaMoO4)nanophosphors by using high gravity rotating packed bed(RPB)technology and paraffin liquid as the solvent.The significant intensified mass transfer and micromixing of reactants in the RPB reactor are benefiting for homogeneous doping of rare-earth ions in the host materials,leading to nanophosphors with high quantum efficiency.The use of liquid paraffin as the solvent eliminates the safety risks associated with volatile organic compounds,increasing the potential for clean production of nanophosphors.Under excitation of deep ultraviolet(DUV)light,the CaMoO4:Na+,Eu3+nanophosphors exhibit red emission at peak wavelength of 615 nm and quantum yield of up to 35.01%.The CaMoO4:Na+,Tb3+nanophosphors exhibit green emission at peak wavelength of543 nm with quantum yield of up to 30.66%.The morphologies of the nanophosphors are tunable from nanofibers through nanorods to nanodots and the possible mechanism of controlling the formation of different nanostructures is proposed on the basis of experimental results and theoretical analysis of mesoscience.These nanophosphors are highly dispersible in organic solvents and utilized for fabricating fabrication of flexible,freestanding luminescent films based on silicone resin.We also demonstrate the red LEDs consisting of the hybrid films of CaMoO4:Na+,Eu3+nanoparticles as color-converting phosphors and DUV LEDs as illuminators,offering strong potential for future nanophosphors-basedsolid-state lighting systems.展开更多
A new method of high-gravity combustion synthesis(HGCS)followed by post-treatment(PT)is reported for preparing high-performance high-entropy alloys(HEAs),Cr0.9FeNi2.5V0.2Al0.5 alloy,whereby cheap thermite powder is us...A new method of high-gravity combustion synthesis(HGCS)followed by post-treatment(PT)is reported for preparing high-performance high-entropy alloys(HEAs),Cr0.9FeNi2.5V0.2Al0.5 alloy,whereby cheap thermite powder is used as the raw material.In this process,the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field.Then,the master alloy is obtained after cooling.Subsequently,the master alloy is sequentially subjected to conventional vacuum arc melting(VAM),homogenization treatment,cold rolling,and annealing treatment to realize a tensile strength,yield strength,and elongation of 1250 MPa,1075 MPa,and 2.9%,respectively.The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating.Based on the calculation of phase separation kinetics in the high-temperature melt,it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.展开更多
By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction met...By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction method. In order to determine the operating conditions of the system, the effects of the concentration of Fe3+ ions(ranging from 0.1 to 0.2 mol/L), the liquid-gas volume ratio(ranging from 15 to 25 L/m3) and the high gravity factor(ranging from 36 to 126) on the removal of H2 S were studied by means of the Box-Behnken design(BBD) under response surface methodology(RSM). The overall results have demonstrated that the BBD with an experimental design can be used effectively in the optimization of the desulfurization process. The optimal conditions based on both individualized and combined responses(at a Fe3+ ion concentration of 0.16 mol/L, a liquid-gas volume ratio of 20.67 L/m3 and a high gravity factor of 87) were found. Under this optimum condition, the desulfurization efficiency could reach 98.81% when the H2 S concentration was 7 g/m3 in APG. In this work, the sulfur product was analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the energy dispersive X-ray spectrometer(EDX). The results of analysis show that the sulfur is made of the high-purity orthorhombic crystals, which are advantageous to environmental conservation.展开更多
This study investigated the indirect oxidation of nitrobenzene(NB)by hydroxyl radicals(·OH)in a rotating packed bed(RPB)using competitive kinetics method with p-nitrochlorobenzene as a reference compound.The rate...This study investigated the indirect oxidation of nitrobenzene(NB)by hydroxyl radicals(·OH)in a rotating packed bed(RPB)using competitive kinetics method with p-nitrochlorobenzene as a reference compound.The rate constants of NB with·OH are calculated to be between(1.465±0.113)×10^(9)L/(mol·s)and(2.497±0.192)×10^(9)L/(mol·s).The experimental data are fitted by the modified Arrhenius equation,where the activation energy is 4877.74 J/mol,the order of NB concentration,rotation speed,and initial pH is 0.2425,0.1400 and 0.0167,respectively.The ozonation process of NB could be enhanced by RPB,which is especially effective for highly concentrated NB-containing waste-water under alkaline conditions.The high gravity technology can accelerate ozone mass transfer and self-decomposition of ozone to produce more·OH,resulting in an increase in the indirect oxidation rate of NB by·OH and consequently effective degradation of NB in wastewater.展开更多
The novel ceramic/metal composite materials were successfully fabricated by combustion synthesis in high gravity field.In this paper,the Ti-B_(4)C was selected as the main combustion reaction system to obtain TiB_(2)-...The novel ceramic/metal composite materials were successfully fabricated by combustion synthesis in high gravity field.In this paper,the Ti-B_(4)C was selected as the main combustion reaction system to obtain TiB_(2)-TiC ceramic substrate,and the 1Cr18Ni9Ti stainless steel was selected as the metal substrate.It was found that the TiB_(2)-TiC/1Cr18Ni9Ti composite materials exhibited continuously graded composition and hybrid microstructure.The TiC1-x carbides and TiB_(2)platelets decreased gradually in size and volume fraction from the ceramic to stainless steel.Due to the rapid action of thermal explosion as well as the dissolution of the molten stainless steel into TiB_(2)-TiC liquid,the diffusion-controlled concentration gradient from the ceramic liquid to the alloy liquid was observed.Finally,as a result of the rapid sequent solidification of the ceramic liquid and the melt alloy surface,the laminated composite materials were achieved in multilevel,scale-span hybrid microstructure.展开更多
Due to its merits of drought tolerance and high yield,sweet potatoes are widely considered as a potential alterative feedstock for bioethanol production.Very high gravity(VHG)technology is an effective strategy for im...Due to its merits of drought tolerance and high yield,sweet potatoes are widely considered as a potential alterative feedstock for bioethanol production.Very high gravity(VHG)technology is an effective strategy for improving the efficiency of ethanol fermentation from starch materials.However,this technology has rarely been applied to sweet potatoes because of the high viscosity of their liquid mash.To overcome this problem,cellulase was added to reduce the high viscosity,and the optimal dosage and treatment time were 8 U/g(sweet potato powder)and 1 h,respectively.After pretreatment by cellulase,the viscosity of the VHG sweet potato mash(containing 284.2 g/L of carbohydrates)was reduced by 81%.After liquefaction and simultaneous saccharification and fer-mentation(SSF),thefinal ethanol concentration reached 15.5%(v/v),and the total sugar conversion and ethanol yields were 96.5%and 87.8%,respectively.展开更多
This study used nitrobenzene as the simulated pollutant to study the effects of common inorganic sodium salts and organics on nitrobenzene degradation by O_3/H_2O_2 in high-gravity fields. The experiment results showe...This study used nitrobenzene as the simulated pollutant to study the effects of common inorganic sodium salts and organics on nitrobenzene degradation by O_3/H_2O_2 in high-gravity fields. The experiment results showed that the highgravity technology could increase the nitrobenzene removal rate by improving the ozone transfer efficiency and ozone dissolution. Coexisting substances had different effects on the degradation kinetics of nitrobenzene in high-gravity fields. Among such substances, Na_2CO_3, NaOH, Na_3PO_4, and NaNO_3 accelerated the removal of nitrobenzene. The main action principle of nitrobenzene degradation by O_3/H_2O_2 is that the additives can increase the pH value of the solution, stimulate ozonolysis, generate hydroxyl radicals(·OH), and improve oxidation efficiency. By contrast, NaCl, NaHCO_3, NaHSO_4, ethanol(C_2H_5OH), acetic acid(CH_3COOH), formic acid(HCOOH), and tert-butyl alcohol(TBA) inhibited nitrobenzene removal. When NaHCO_3, CH_3COOH, or HCOOH were added, the pH value of the solution decreased and free radical chain reactions were hindered. However, NaCl, NaHCO_3, C_2H_5OH, and TBA consumed ·OH radicals and inhibited nitrobenzene removal.展开更多
The loess plateau is featured by a sharply undulated and remarkably incised surface. The sharp surface undulation means great variation of loess thickness. Since the loess layer exhibits significant density contrast w...The loess plateau is featured by a sharply undulated and remarkably incised surface. The sharp surface undulation means great variation of loess thickness. Since the loess layer exhibits significant density contrast with the underlying formation, a high frequency gravity anomaly with a certain magnitude will appear. The high frequency gravity anomaly can result in some difficulties for processing and interpreting the gravity data, thereby reducing the usefulness of gravity surveys in loess plateau areas. We carried out a high precision gravity survey in the SHJZ structural zone. During data processing, we applied terrain and loess corrections to effectively remove or suppress the gravity effect resulting from surface undulation and variation of loess thickness. We obtained high precision gravity data which matches well with other geophysical data. The comprehensive interpretation based on the final gravity data help to study local structure integrated with other published geophysical data.展开更多
In this study, a classic survey adjustment computation method was used for data obtained in the Inner Mongolia and Ningxia gravimetric networks between September 2013 and April 2015 so as to investigate the variation ...In this study, a classic survey adjustment computation method was used for data obtained in the Inner Mongolia and Ningxia gravimetric networks between September 2013 and April 2015 so as to investigate the variation of gravity before the Alxa Zuoqi M5.8 earthquake. The relationship between gravity variation and the Alxa Zuoqi M5.8 earthquake was analyzed. The results showed that: (1) the severe variation in gravity field at the test sites before the Alxa Zuoqi M5.8 earthquake, as well as the subsequent accelerated rising, might be an earthquake precursor; (2) the Alxa Zuoqi M5.8 earthquake occurred at the turning point where the high-gravity gradient zone changed from the NE direction to NW.展开更多
The author argues in this document that initial vacuum state values possibly responsible for GW generation in relic conditions in the initial onset of inflation may have a temporary unsqueezed, possibly even coherent ...The author argues in this document that initial vacuum state values possibly responsible for GW generation in relic conditions in the initial onset of inflation may have a temporary unsqueezed, possibly even coherent initial value, which would permit in certain models classical coherent initial gravitational wave states. Furthermore, several arguments pro and con as to if or not initial relic GW should be high frequency will be presented, with the reason given why earlier string models did NOT favor low frequency relic GW from the big bang. What is observed is that large higher dimensions above our 4 Dimensional space time, if recipients of matter-energy from collapse and re birth of the universe are enough to insure low relic GW. The existence of higher dimensions, in itself if the additional dimensions are small and compact will have no capacity to lower the frequency limit values of relic GW, as predicted by Giovannini, et al. in 1995.展开更多
To study the effect of a strong underwater shock wave on a concrete dam, this research aims to improve hammer impact methods in model tests. Six 1:200 scale models were designed and tested under distributed impact loa...To study the effect of a strong underwater shock wave on a concrete dam, this research aims to improve hammer impact methods in model tests. Six 1:200 scale models were designed and tested under distributed impact loads. A device was deployed for a direct measurement of the impact force at the upstream face of the dams. The model dam bases were anchored to prevent displacement. The experimental results indicate that the top part of the concrete dam is a weak zone, and the impact failure initiates with a fracture on the top of the dam. The peak value of impact stress increases when the second crack appears in the concrete dam from the upstream face to the downstream face. And, the level of the second crack in the dam body is lower as the peak value of impact stress increases. In this study, dynamic analysis was conducted by calculating the results to verify the effectiveness of a device to directly measure the impact force. This method may be used to approximately forecast the damage of concrete dam and may also be useful in other engineering applications.展开更多
基金Supported by the Natural Science Foundation of Fujian Province of China (E0810018)
文摘An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.
基金the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2010021007-2) for its financial support to this study
文摘A novel high gravity electrochemical reactor with multi-concentric cylindrical electrodes was used in the electrochemical treatment of 5 000 mg/L phenol-containing wastewater at a petrochemical plant, which can operate continuously and process in a large scale. The results show that the high gravity technology used in electrochemical treatment of phenol-containing wastewater can shorten the electrolysis time, decrease the electrolysis voltage, and reduce the energy consumption. The COD removal efficiency was high in the high-gravity field, and reached up to about 48%, which was about 2 times the value achieved in the normal gravity field at a processing capacity of 6 L, a high gravity factor of 80, a voltage of 12 V, an electrolysis time of 40 min, and a wastewater flowrate of 80 L/h.
基金the National Nature Science Foundation of China (No. 21206153)the Science and Science and Technology Development Program of Taiyuan Municipal Government (No. 120164053) for financial support
文摘The integrated high gravity-ultrasonic/ozonation/electrolysis technology was applied in the pretreatment of wastewater containing nitrobenzene. The effect ofpH value, high gravity factor, liquid flow-rate and electric current density on removal of COD and nitrobenzene compounds was investigated. Experimental results have determined the optimal pro- cess regime involving a high gravity factor of 100, an electric current density of 20 mA/cm2, a liquid flow-rate of 100 L/h, and an initial liquid pH value of 11. After the wastewater had been treated for 180 rain, the degradation of nitrobenzene and COD reached 99% and 80%, respectively, with the biochemical coefficient (BOD/COD) equating to 0.64, and the subse- quent treatment of wastewater could be carried out by conventional biochemical means. Compared with traditional aeration- ozone contactors, a rotating packed bed with high mass transfer characteristics could be used to increase the ozonation treat- ment efficiency.
基金the Shanxi Provin-cial Youth Science and Technology Research Fund (No.2008021009-2) for the financial support to this project
文摘The removal of hydrogen sulfide from gas plays an important role in rational utilization of resources and environ- mental protection. In this paper, the process of hydrogen sulfide removal by wet oxidation method in a rotating packed bed was investigated in a scale for treating 10 000 Nm3/h of gas. On the basis of studying the influence of the species and con- centration of alkali source, the liquid/gas volume ratio, the high gravity factor, and the hydrogen sulfide content in feed gas on the desulfurization effect, the suitable technological conditions were obtained. The hydrogen sulfide removal efficiency could reach 98.0% under these conditions. The results of continuous operation of process facilities showed that the high gravity method has many merits including higher desulfurization rate, good stability in operation, lower liquid/gas volume ratio, greater operation elasticity, and apparent energy saving effects.
基金supported by National Science Centre in Cracow under doctoral research grant 0630/B/T02/2011/40
文摘The vehicles with high gravity centre are more prone to roll over. The paper deals with a method of dynamics analysis of fire engines which is an example of these types of vehicle. Algorithms for generating the equations of motion have been formulated by homogenous transformations and Lagrange's equation. The model presented in this article consists of a system of rigid bodies connected one with another forming an open kinematic chain. Road maneuvers such as a lane change and negotiating a circular track have been presented as the main simulations when a car loses its stability. The method has been verified by comparing numerical results with results obtained by experimental measurements performed during road tests.
基金Supported by the Open Fund of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials(10zxfk38)
文摘The superfine BaCO3 particles were synthesized by high gravity technology with BaCl·2H2O and Na2CO3 as the raw materials. The changes of particle size and morphology were studied by adding different amount of EDTA, and rod-like, near-spherical and cylindrical shape BaCO3 were prepared. The BaCO3 particles were analyzed and characterized by TG/SDAT, SEM, XRD and FT-IR. The results indicated that the crystal transformation temperature and decomposition temperature of BaCO3 had increased because of EDTA addition. With the increase of EDTA amount, the shape of BaCO3 changed from irregular rod-like to near-spherical then to cylindrical shape. All different shape BaCO3 adopts orthorhombic crystal systems.
基金National Natural Science Foundation of China(51988101)Fundamental Research Funds for the Central Universities(226-2022-00050)。
文摘The recent progress and future prospects for ultra-centrifugal sedimentation in solids are described,mainly involving equipment,miscible systems and compounds.Almost 90%ultracentrifugation experiments were performed on the 1st and 2nd high-temperature ultracentrifuge which is typically operated at temperatures below 500℃ under the maximum centrifugal acceleration up to 106 g.The strong gravitational and temperature fields induce atomic-scale graded structure,grain growth and refinement,and voids accumulation caused by the atomic sedimentation in miscible systems.New structures,properties and substances are produced in some compounds.A new cantilever high-temperature ultracentrifuge with a test temperature up to 1200℃ is under construction at Zhejiang University,making it possible to simulate the composition,microstructure and property evolution of superalloys in the operating environment of aircraft engines.
基金This work was fnancially supported by National Natural Science Foundation of China(No.20236020 and 50272008)Special Research Fund of Doctoral Subjects of Chinese Universities(No.20010010004)Fok Ying Tung Foundation.
文摘Mass production of nanoparticles at low cost has attracted much attention from industrial and academic circles. In this paper, a novel method, the high gravity reactive precipitation (HGRP) technology, of manufacturing CaCO3 nanoparticles, presently scaled-up to an annual capacity of 10,000 tons, is presented. This paper describes the process principle, the process design and experiments on the syntheses of 15-30 nm CaCO3, 30-50 nm SiO2, 20-30 nm TiO2, 20-60 nm ZnO, 20-30 nm ZnS, 30 nm SrCO3, 40-70 nm BaTiO3, stick-like nano BaCO3 as well as nano-fibrillar aluminum hydroxide measuring 1-10 nm in diameter and 50-300 nm in length, using liquid-liquid, gas-liquid and gas-liquid-solid reactant systems. The advantage of using the HGRP technology is illustrated by comparison to conventional methods.
文摘Fast chemical reactions involved in nanomaterials synthesis, polymerization, special chemicals production, reactive absorption, etc., are often difficult to control in terms of product quality, process efficiency and production consistency. After a theoretical analysis on such processes based on chemical reaction engineering fundamentals, an idea to intensify micromixing (mixing on the molecular scale) and mass transfer and therefore to control the process ideally was proposed. By experimental investigations of mass transfer and micromixing characteristics in the Rotating Packed Bed (RPB, or 'HIGEE' device), we achieved unique intense micromixing. This led us to the invention of using RPB as a reactor for the fabrication of nanoparticles (Chen et al., 2000).
基金financial support from the National Key Research and Development Program of China(2017YFB0404302/2017YFB0404300)National Natural Science Foundation of China(21808009,91934303)the Beijing Natural Science Foundation(2182051)。
文摘In this work,we report an innovative route for the synthesis of rare-earth doped calcium molybdate(CaMoO4)nanophosphors by using high gravity rotating packed bed(RPB)technology and paraffin liquid as the solvent.The significant intensified mass transfer and micromixing of reactants in the RPB reactor are benefiting for homogeneous doping of rare-earth ions in the host materials,leading to nanophosphors with high quantum efficiency.The use of liquid paraffin as the solvent eliminates the safety risks associated with volatile organic compounds,increasing the potential for clean production of nanophosphors.Under excitation of deep ultraviolet(DUV)light,the CaMoO4:Na+,Eu3+nanophosphors exhibit red emission at peak wavelength of 615 nm and quantum yield of up to 35.01%.The CaMoO4:Na+,Tb3+nanophosphors exhibit green emission at peak wavelength of543 nm with quantum yield of up to 30.66%.The morphologies of the nanophosphors are tunable from nanofibers through nanorods to nanodots and the possible mechanism of controlling the formation of different nanostructures is proposed on the basis of experimental results and theoretical analysis of mesoscience.These nanophosphors are highly dispersible in organic solvents and utilized for fabricating fabrication of flexible,freestanding luminescent films based on silicone resin.We also demonstrate the red LEDs consisting of the hybrid films of CaMoO4:Na+,Eu3+nanoparticles as color-converting phosphors and DUV LEDs as illuminators,offering strong potential for future nanophosphors-basedsolid-state lighting systems.
基金the National Natural Science Foundation of China(No.51702332)the Key Research Projects in Gansu Province(No.17YF1GA020)the CAS Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry(Youth Innovation Fund No.CRYOQN201705).
文摘A new method of high-gravity combustion synthesis(HGCS)followed by post-treatment(PT)is reported for preparing high-performance high-entropy alloys(HEAs),Cr0.9FeNi2.5V0.2Al0.5 alloy,whereby cheap thermite powder is used as the raw material.In this process,the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field.Then,the master alloy is obtained after cooling.Subsequently,the master alloy is sequentially subjected to conventional vacuum arc melting(VAM),homogenization treatment,cold rolling,and annealing treatment to realize a tensile strength,yield strength,and elongation of 1250 MPa,1075 MPa,and 2.9%,respectively.The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating.Based on the calculation of phase separation kinetics in the high-temperature melt,it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.
基金financially supported by the National Science Foundation of China (No. 21376229)the Science and Technology Development Plan of Shanxi Province (No. 20130321035-02)
文摘By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction method. In order to determine the operating conditions of the system, the effects of the concentration of Fe3+ ions(ranging from 0.1 to 0.2 mol/L), the liquid-gas volume ratio(ranging from 15 to 25 L/m3) and the high gravity factor(ranging from 36 to 126) on the removal of H2 S were studied by means of the Box-Behnken design(BBD) under response surface methodology(RSM). The overall results have demonstrated that the BBD with an experimental design can be used effectively in the optimization of the desulfurization process. The optimal conditions based on both individualized and combined responses(at a Fe3+ ion concentration of 0.16 mol/L, a liquid-gas volume ratio of 20.67 L/m3 and a high gravity factor of 87) were found. Under this optimum condition, the desulfurization efficiency could reach 98.81% when the H2 S concentration was 7 g/m3 in APG. In this work, the sulfur product was analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the energy dispersive X-ray spectrometer(EDX). The results of analysis show that the sulfur is made of the high-purity orthorhombic crystals, which are advantageous to environmental conservation.
基金the Specialized Research Fund for Sanjin Scholars Program of Shanxi Province(No.201707)Key Research&Development Plan of Shanxi Province(No.201903D321059)+1 种基金Shanxi Scholarship Council of China(No.HGKY2019071)Transformation and Cultivation Projects of Scientific and Technological Achievements of Higher Education Institutions for Shanxi Province(No.2020CG040).
文摘This study investigated the indirect oxidation of nitrobenzene(NB)by hydroxyl radicals(·OH)in a rotating packed bed(RPB)using competitive kinetics method with p-nitrochlorobenzene as a reference compound.The rate constants of NB with·OH are calculated to be between(1.465±0.113)×10^(9)L/(mol·s)and(2.497±0.192)×10^(9)L/(mol·s).The experimental data are fitted by the modified Arrhenius equation,where the activation energy is 4877.74 J/mol,the order of NB concentration,rotation speed,and initial pH is 0.2425,0.1400 and 0.0167,respectively.The ozonation process of NB could be enhanced by RPB,which is especially effective for highly concentrated NB-containing waste-water under alkaline conditions.The high gravity technology can accelerate ozone mass transfer and self-decomposition of ozone to produce more·OH,resulting in an increase in the indirect oxidation rate of NB by·OH and consequently effective degradation of NB in wastewater.
基金sponsored by the National Natural Science Foundation of China(Grant No.51072229).
文摘The novel ceramic/metal composite materials were successfully fabricated by combustion synthesis in high gravity field.In this paper,the Ti-B_(4)C was selected as the main combustion reaction system to obtain TiB_(2)-TiC ceramic substrate,and the 1Cr18Ni9Ti stainless steel was selected as the metal substrate.It was found that the TiB_(2)-TiC/1Cr18Ni9Ti composite materials exhibited continuously graded composition and hybrid microstructure.The TiC1-x carbides and TiB_(2)platelets decreased gradually in size and volume fraction from the ceramic to stainless steel.Due to the rapid action of thermal explosion as well as the dissolution of the molten stainless steel into TiB_(2)-TiC liquid,the diffusion-controlled concentration gradient from the ceramic liquid to the alloy liquid was observed.Finally,as a result of the rapid sequent solidification of the ceramic liquid and the melt alloy surface,the laminated composite materials were achieved in multilevel,scale-span hybrid microstructure.
基金financial support from the National Natural Science Foundation of China(Grant No.20736006)the National Basic Research Program of China(Grant No.2007CB714301)+1 种基金the international collaboration project of MOST(2006DFA62400)Key Projects in the National Science&Technology Pillar Program(No.2007BAD42B02).
文摘Due to its merits of drought tolerance and high yield,sweet potatoes are widely considered as a potential alterative feedstock for bioethanol production.Very high gravity(VHG)technology is an effective strategy for improving the efficiency of ethanol fermentation from starch materials.However,this technology has rarely been applied to sweet potatoes because of the high viscosity of their liquid mash.To overcome this problem,cellulase was added to reduce the high viscosity,and the optimal dosage and treatment time were 8 U/g(sweet potato powder)and 1 h,respectively.After pretreatment by cellulase,the viscosity of the VHG sweet potato mash(containing 284.2 g/L of carbohydrates)was reduced by 81%.After liquefaction and simultaneous saccharification and fer-mentation(SSF),thefinal ethanol concentration reached 15.5%(v/v),and the total sugar conversion and ethanol yields were 96.5%and 87.8%,respectively.
基金supported by the Natural Science Foundation of China(21206153,U1610106)the Excellent Youth Science and Technology Foundation of Province Shanxi of China(2014021007)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(201316)
文摘This study used nitrobenzene as the simulated pollutant to study the effects of common inorganic sodium salts and organics on nitrobenzene degradation by O_3/H_2O_2 in high-gravity fields. The experiment results showed that the highgravity technology could increase the nitrobenzene removal rate by improving the ozone transfer efficiency and ozone dissolution. Coexisting substances had different effects on the degradation kinetics of nitrobenzene in high-gravity fields. Among such substances, Na_2CO_3, NaOH, Na_3PO_4, and NaNO_3 accelerated the removal of nitrobenzene. The main action principle of nitrobenzene degradation by O_3/H_2O_2 is that the additives can increase the pH value of the solution, stimulate ozonolysis, generate hydroxyl radicals(·OH), and improve oxidation efficiency. By contrast, NaCl, NaHCO_3, NaHSO_4, ethanol(C_2H_5OH), acetic acid(CH_3COOH), formic acid(HCOOH), and tert-butyl alcohol(TBA) inhibited nitrobenzene removal. When NaHCO_3, CH_3COOH, or HCOOH were added, the pH value of the solution decreased and free radical chain reactions were hindered. However, NaCl, NaHCO_3, C_2H_5OH, and TBA consumed ·OH radicals and inhibited nitrobenzene removal.
文摘The loess plateau is featured by a sharply undulated and remarkably incised surface. The sharp surface undulation means great variation of loess thickness. Since the loess layer exhibits significant density contrast with the underlying formation, a high frequency gravity anomaly with a certain magnitude will appear. The high frequency gravity anomaly can result in some difficulties for processing and interpreting the gravity data, thereby reducing the usefulness of gravity surveys in loess plateau areas. We carried out a high precision gravity survey in the SHJZ structural zone. During data processing, we applied terrain and loess corrections to effectively remove or suppress the gravity effect resulting from surface undulation and variation of loess thickness. We obtained high precision gravity data which matches well with other geophysical data. The comprehensive interpretation based on the final gravity data help to study local structure integrated with other published geophysical data.
基金supported by the China Earthquake Administration Earthquake Tracking Task Orientation(2016020202,2016010216,and 2016010220)the“Three Combination”project of the China Earthquake Administration(163201)+2 种基金the National Natural Science Foundation of China(41204058,41474064,and 41374088)the special earthquake research,China Earthquake Administration(201508009-08)the Director,Foundation of Institute of Seismology,China Earthquake Administration(IS201326123)
文摘In this study, a classic survey adjustment computation method was used for data obtained in the Inner Mongolia and Ningxia gravimetric networks between September 2013 and April 2015 so as to investigate the variation of gravity before the Alxa Zuoqi M5.8 earthquake. The relationship between gravity variation and the Alxa Zuoqi M5.8 earthquake was analyzed. The results showed that: (1) the severe variation in gravity field at the test sites before the Alxa Zuoqi M5.8 earthquake, as well as the subsequent accelerated rising, might be an earthquake precursor; (2) the Alxa Zuoqi M5.8 earthquake occurred at the turning point where the high-gravity gradient zone changed from the NE direction to NW.
文摘The author argues in this document that initial vacuum state values possibly responsible for GW generation in relic conditions in the initial onset of inflation may have a temporary unsqueezed, possibly even coherent initial value, which would permit in certain models classical coherent initial gravitational wave states. Furthermore, several arguments pro and con as to if or not initial relic GW should be high frequency will be presented, with the reason given why earlier string models did NOT favor low frequency relic GW from the big bang. What is observed is that large higher dimensions above our 4 Dimensional space time, if recipients of matter-energy from collapse and re birth of the universe are enough to insure low relic GW. The existence of higher dimensions, in itself if the additional dimensions are small and compact will have no capacity to lower the frequency limit values of relic GW, as predicted by Giovannini, et al. in 1995.
基金The National Science Foundation of China under Grant No.51121005
文摘To study the effect of a strong underwater shock wave on a concrete dam, this research aims to improve hammer impact methods in model tests. Six 1:200 scale models were designed and tested under distributed impact loads. A device was deployed for a direct measurement of the impact force at the upstream face of the dams. The model dam bases were anchored to prevent displacement. The experimental results indicate that the top part of the concrete dam is a weak zone, and the impact failure initiates with a fracture on the top of the dam. The peak value of impact stress increases when the second crack appears in the concrete dam from the upstream face to the downstream face. And, the level of the second crack in the dam body is lower as the peak value of impact stress increases. In this study, dynamic analysis was conducted by calculating the results to verify the effectiveness of a device to directly measure the impact force. This method may be used to approximately forecast the damage of concrete dam and may also be useful in other engineering applications.