期刊文献+
共找到1,136篇文章
< 1 2 57 >
每页显示 20 50 100
Effect of B_(2)O_(3) enrichment on microstructural inhomogeneity of high strength steel weldments
1
作者 Joydeep Roy Pritam Das 《China Welding》 CAS 2024年第3期25-32,共8页
The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to eval... The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to evaluate the joint strength due to the enrichment of boron.To change the chemical composition of the weld metal,boron trioxide powder was blended with virgin flux in various proportions(2.5%−12.5%),which led to an increase in boron weight percentage in the range of 0−0.0065.The results show that weld metals(WM)optical micrographs depict the various types of ferrites,pearlites and secondary phases like martensite-austenite(M-A).Acicular ferrite content was influenced by the boron trioxide addition.Heat affected zone(HAZ)micrographs were not showing appreciable changes with oxide enrichment.Hardness and toughness of weld metals showed the mixed trend with B_(2)O_(3) enrichment whereas,small reduction in ultimate tensile strength(UTS)and yield strength(YS)was observed. 展开更多
关键词 high strength steel B_(2)O_(3) flux microstructure hardness TOUGHNESS ultimate tensile strength
下载PDF
Recent developments of the high strength and high ductility nanostructured materials 被引量:1
2
作者 Jian LU,Aiying CHEN,Hongning KOU,Ying LI,Leyu WANG and Chunsheng WEN Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hung Hom Kowloon,Hong Kong,China 《Baosteel Technical Research》 CAS 2010年第S1期93-,共1页
This talk will summarize the recent work related to a kind of new nanomaterials produced by the SMAT (surface mechanical attrition treatment).The concept of surface nanocrystallization of materials will be presented.I... This talk will summarize the recent work related to a kind of new nanomaterials produced by the SMAT (surface mechanical attrition treatment).The concept of surface nanocrystallization of materials will be presented.In terms of the grain refinement mechanism induced by plastic deformation,a novel surface mechanical attrition(SMA) technique was developed for synthesizing a nanostructured surface layer on metallic materials in order to upgrade the overall properties and performance.The grain refinement mechanism of the surface layer during the SMA treatment will be analyzed in terms of the nanostructure observations in several typical materials.Very high yield stress(5 times of the base material) on the surface layer of the material obtained by the SMAT has been observed.The effect of surface nanostructures on the mechanical behavior and on the failure mechanism of metallic material shows the possibility to develop a new strength gradient composite using co-rolling and nitriding.The role of residual stress induced during the treatment will be investigated and discussed.The developed materials are also porosity free materials which can be used as reference material for the local mechanical behavior investigation technique such as the nanoindentation.A general concept for obtaining high strength and high ductility nanostructured materials will be presented.The exceptional high strength and high ductility steels have developed.The simulation of the mechanisms for improving ductility of high strength nanostructured materials will be presented.The potential applications for the land transportation vehicles(car,bus,train) and wind energy have been investigated.Some examples of concept design for the integration of the advanced nanostructured steels will be presented. 展开更多
关键词 nanostructured materials high strength high ductility surface mechanical attrition treatment(SMAT)
下载PDF
Effect of laser heating on the microstructure and hardness of TRIP590advanced high strength steel used for roll forming 被引量:1
3
作者 王海波 Jin Pengcheng +1 位作者 Yan Yu Li Qiang 《High Technology Letters》 EI CAS 2015年第4期429-432,共4页
TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by met... TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by metallographic microscope,scanning electron microscope,and hardness tester.The purpose was to study the effect of laser power on microstructure and hardness of TRIP590 steel.It is shown that the power of laser plays an important role on the microstructure and hardness of heated steel sheets.The results are helpful to determine suitable power for the laser auxiliary forming of Trip590 steel in order to obtain uniform microstructure and high hardness. 展开更多
关键词 TRIP590 advanced high strength steel laser heating MICROSTRUCTURE hardness
下载PDF
HIGH TEMPERATURE MATERIALS AND STRENGTH STUDY IN CHINA
4
作者 Xie XishanHigh Temperature Materials Testing and Research Laboratories, University of Science and Technology Beijing, Beijing 100083, ChinaLin Fusheng Cheng ShichangShanghai Power Equipment Research Institute Central Iron and Steel Re 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第3期257-265,共9页
In the past half century China has developed and formed her own system ofhigh temperature materials for power, automobile and aero-engine industries in the temperature rangefrom 550 deg C to 1100 deg C. These high tem... In the past half century China has developed and formed her own system ofhigh temperature materials for power, automobile and aero-engine industries in the temperature rangefrom 550 deg C to 1100 deg C. These high temperature materials include heat-resisting steels,iron-base, nickel-iron-base and nickel-base superalloys. Some achievements - in high temperaturestrength study, new technologies and new alloy development are also discussed. 展开更多
关键词 high temperature materials high temperature strength study China
下载PDF
Developing Sustainable High Strength Concrete Mixtures Using Local Materials and Recycled Concrete
5
作者 Anthony Torres Alex Burkhart 《Materials Sciences and Applications》 2016年第2期128-137,共10页
This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtai... This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtained locally. The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as to make HSC more affordable to a wider variety of applications. The specific constituents were: limestone, dolomite, manufactured sand (limestone), locally available Type I/II cement, silica fume, and recycled concrete aggregate, which was obtained from a local recycler which obtains their product from local demolition. Multiple variables were investigated, such as the aggregate type and size, concrete age (7, 14, and 28-days), the curing regimen, and the water-to-cement ratio (w/c) to optimize a HSC mixture that used local materials. This systematic development revealed that heat curing the specimens in a water bath at 50℃ (122oF) after demolding and then dry curing at 200℃ (392oF) two days before testing with a w/c of 0.28 at 28-days produced the highest compressive strengths. Once an optimum HSC mixture was identified a partial replacement of the coarse aggregate with RCA was completed at 10%, 20%, and 30%. The results showed a loss in compressive strength with an increase in RCA replacement percentages, with the highest strength being approximately 93.0 MPa (13,484 psi) at 28-days for the 10% RCA replacement. The lowest strength obtained from an RCA-HSC mixture was approximately 72.9 (MPa) (10,576 psi) at 7-days. The compressive strengths obtained from the HSC mixtures containing RCA developed in this study are comparable to HSC strengths presented in the literature. Developing this innovative material with local materials and RCA ultimately produces a novel sustainable construction material, reduces the costs, and produces mechanical performance similar to prepackaged, commercially, available construction building materials. 展开更多
关键词 high strength Concrete SUSTAINABILITY Recycled Concrete Aggregate Local Products Construction materials
下载PDF
APPROXIMATE MEANS FOR EVALUATING TENSILE STRENGTH OF HIGH POROSITY MATERIALS 被引量:3
6
作者 Liu, Peisheng Fu, Chao Li, Tiefan 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期72-80,共9页
1INTRODUCTIONThetensilestrengthisanimportantpropertyforengineeringmaterials,andthesamefortheporousones,sope... 1INTRODUCTIONThetensilestrengthisanimportantpropertyforengineeringmaterials,andthesamefortheporousones,sopeoplehavebeenthink... 展开更多
关键词 high POROSITY material TENSILE strength evaluation
下载PDF
Effects of the shape and size of rectangular inclusions on the fatigue cracking behavior of ultra-high strength steels 被引量:3
7
作者 Yan-ping Zeng Hong-mei Fan Xi-shan Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第4期360-364,共5页
The fatigue cracking behavior of ultra-high strength steels containing rectangular inclusions of small sizes were investigated based on in situ observations by scanning electron microscopy (SEM). The size and shape ... The fatigue cracking behavior of ultra-high strength steels containing rectangular inclusions of small sizes were investigated based on in situ observations by scanning electron microscopy (SEM). The size and shape of rectangular inclusions affect markedly the initiation site and propagation path of a fatigue crack. Especially, the initiation site of a fatigue crack depends strongly on the angle between the long-axis of a rectangle inclusion and the loading direction, and the length/width ratio of this rectangle inclusion because the residual stress distribution fields vary with these conditions. The results coincide very well with those of finite element analysis. 展开更多
关键词 high strength steel INCLUSIONS fatigue of materials crack initiation crack propagation
下载PDF
Dynamic recrystallization behavior and kinetics of high strength steel 被引量:1
8
作者 吴光亮 周超洋 刘新彬 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1007-1014,共8页
The dynamic recrystallization behavior of high strength steel during hot deformation was investigated.The hot compression test was conducted in the temperature range of 950-1150 °C under strain rates of 0.1,1 and... The dynamic recrystallization behavior of high strength steel during hot deformation was investigated.The hot compression test was conducted in the temperature range of 950-1150 °C under strain rates of 0.1,1 and 5 s-1.It is observed that dynamic recrystallization(DRX) is the main flow softening mechanism and the flow stress increases with decreasing temperature and increasing strain rate.The relationship between material constants(Q,n,α and ln A) and strain is identified by the sixth order polynomial fit.The constitutive model is developed to predict the flow stress of the material incorporating the strain softening effect and verified.Moreover,the critical characteristics of DRX are extracted from the stress-strain curves under different deformation conditions by linear regression.The dynamic recrystallization volume fraction decreases with increasing strain rate at a constant temperature or decreasing deformation temperature under a constant strain rate.The kinetics of DRX increases with increasing deformation temperature or strain rate. 展开更多
关键词 flow stress dynamic recrystallization kinetics high strength steel constitutive model material constants
下载PDF
Prediction and Verification of Resistance Spot Welding Results of Ultra-High Strength Steels through FE Simulations 被引量:1
9
作者 Oscar Andersson Arne Melander 《Modeling and Numerical Simulation of Material Science》 2015年第1期26-37,共12页
Resistance spot welding (RSW) is the most common welding method in automotive engineering due to its low cost and high ability of automation. However, physical weldability testing is costly, time consuming and depende... Resistance spot welding (RSW) is the most common welding method in automotive engineering due to its low cost and high ability of automation. However, physical weldability testing is costly, time consuming and dependent of supplies of material and equipment. Finite Element (FE) simulations have been utilized to understand, verify and optimize manufacturing processes more efficiently. The present work aims to verify the capability of FE models for the RSW process by comparing simulation results to physical experiments for materials used in automotive production, with yield strengths from approximately 280 MPa to more than 1500 MPa. Previous research has mainly focused on lower strength materials. The physical weld results were assessed using destructive testing and an analysis of expulsion limits was also carried out. Extensive new determination of material data was carried out. The material data analysis was based on physical testing of material specimens, material simulation and comparison to data from literature. The study showed good agreement between simulations and physical testing. The mean absolute error of weld nugget size was 0.68 mm and the mean absolute error of expulsion limit was 1.10 kA. 展开更多
关键词 Resistance SPOT WELDING FE Simulations high strength Steel Material Modeling WELD SIZE
下载PDF
Developing Sustainable Ultra High Strength Concrete Mixtures Using Spent Foundry Sand 被引量:1
10
作者 Anthony Torres Federico Aguayo Srinivas Allena 《Journal of Civil Engineering and Architecture》 2019年第6期343-352,共10页
This study presents the development of ultra high strength concrete(UHSC)that has been made more sustainable by using both local materials from central Texas and spent foundry sand(FS)from the metal casting industry,w... This study presents the development of ultra high strength concrete(UHSC)that has been made more sustainable by using both local materials from central Texas and spent foundry sand(FS)from the metal casting industry,which has also been obtained locally.This study first describes various trial mixtures tested as well as the specimen preparation techniques investigated that led to the final UHSC-FS mixtures.The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as making UHSC more affordable to a wider variety of applications.The final mixture design constituents were:river sand,locally available type I/II cement,silica fume,and spent FS,which was obtained from a local steel casting company.Multiple variables were investigated,such as the aggregate type and size,concrete age(7,14,and 28-days),the curing regimen,and the water-to-cement ratio(w/cm)to optimize a UHSC mixture that used local materials and FS.This systematic development revealed that heat curing the specimens in a water bath at 50 oC(122 oF)after demolding and then dry curing at 200 oC(392 oF)two days before testing with a w/cm of 0.20 at 28-days produced the highest compressive strengths.Once an optimum UHSC mixture was identified a partial replacement of the fine aggregate with FS was completed at 10%,20%,and 30%.The results showed an increase of compressive strength performance at 10%replacement,followed by no change at 20%,and finally a slight decrease at 30%.Developing this innovative material with local materials and FS ultimately produces a novel sustainable construction material,reduces the costs,and produces mechanical performance similar to prepackaged,commercially,available construction building materials. 展开更多
关键词 high strength CONCRETE SUSTAINABILITY recycled CONCRETE AGGREGATE local products construction materials
下载PDF
Mechanical model for yield strength of nanocrystalline materials under high strain rate loading
11
作者 朱荣涛 周剑秋 +1 位作者 马璐 张振忠 《Journal of Central South University》 SCIE EI CAS 2008年第S1期447-452,共6页
To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mech... To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mechanism of nanocrystalline materials under high strain rate loading was developed.As a first step of the research,the yield behavior of the nanocrystalline materials under high strain rate loading was mainly concerned in the model and uniform deformation was assumed for simplification.Nanocrystalline materials were treated as composites consisting of grain interior phase and grain boundary phase,and grain interior and grain boundary deformation mechanisms under high strain rate loading were analyzed,then Voigt model was applied to coupling grain boundary constitutive relation with mechanical model for grain interior phase to describe the overall yield mechanical behavior of nanocrystalline materials.The predictions by the developed model on the yield strength of nanocrysatlline materials at high strain rates show good agreements with various experimental data.Further discussion was presented for calculation results and relative experimental observations. 展开更多
关键词 NANOCRYSTALLINE materials DEFORMATION mechanism modeling YIELD strength high STRAIN rate
下载PDF
Developing High Strength Pervious Concrete Mixtures with Local Materials
12
作者 Anthony Torres Federico Aguayo +3 位作者 Cristian Gaedicke Parker Nerby Mario Cavazos Collin Nerby 《Journal of Materials Science and Chemical Engineering》 2020年第1期20-34,共15页
This study focuses on developing pervious concrete mixtures that have higher compressive strengths than conventional pervious concrete. This study also focuses on producing high strength pervious concrete that is also... This study focuses on developing pervious concrete mixtures that have higher compressive strengths than conventional pervious concrete. This study also focuses on producing high strength pervious concrete that is also made with locally available materials. The study focused on four aspects of pervious concrete to produce high compressive strengths. These parameters were the effect of the coarse aggregate (type and size), the compaction of the test specimens, the effect of the w/c along with superplasticizers, and lastly the effect of silica fume. This study was completed parametrically in order to isolate each variable in order to see its individual affect. Once an optimum performance was obtained from one variable the best performing mixture was used for the next variable testing. This method allowed for the highest performing mixture to be obtained from each of the investigated variables. The results showed that high strength pervious concrete made with local aggregates, without polymers, and without fibers can be produced in the range of 15.44 MPa - 21.63 MPa. A porosity range 19.1% - 32.9% with a percolation rate range of 5.8 mm/s - 1.9 mm/s was also achieved, with a porosity of 19.4% and percolation rate of 2.6 mm/s for the highest performing mixture. 展开更多
关键词 Pervious Concrete high strength COMPRESSIVE strength Local materials SUSTAINABLE
下载PDF
Strength Acquisition Mechanism of High Temperature Resistant Materials Prepared by Waste Architectural Ceramics
13
作者 HUANG Zhaohui SHI Tengteng +7 位作者 LIU Yangai WU Xiaowen LIU Xianjie LIN Fankai LENG Gouqin ZHAN Huasheng LI Yanjing GAO Changhe 《China's Refractories》 CAS 2022年第1期8-15,共8页
In order to realize the large-scale and high-value utilization of waste architectural ceramics,high-temperature resistant materials based on waste architectural ceramics were prepared with sodium silicate as the binde... In order to realize the large-scale and high-value utilization of waste architectural ceramics,high-temperature resistant materials based on waste architectural ceramics were prepared with sodium silicate as the binder,clay/bauxite and metakaolin/bauxite as coating materials,and the cold strength obtaining mechanism was explored.The phase composition,the microstructure and the mechanical properties of the high temperature resistant materials based on waste architectural ceramics were tested and analyzed.The results showed that when the heat treatment temperature was between 110-1000℃,the strength of the samples mainly came from the physical adhesion of sodium silicate and fine powder.When the temperature rose to 1100℃,the strength of the sample was improved since the internal low-melting-point components melted and promoted sintering.The addition of clay and bauxite can effectively enhance the flexural strength of the samples when the heat treatment temperature is 1000℃.When the heat treatment temperature rises from 900 to 1000℃,the flexural strength of the samples will be enhanced owing to the formation of silica alumina spinel and mullite from metakaolin. 展开更多
关键词 waste architectural ceramics high value utilization high-temperature resistant materials flexural strength
下载PDF
Internal Curing Using Water-releasing Material for High Strength Micro-expansive Concrete 被引量:5
14
作者 吕林女 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第3期510-513,共4页
Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this probl... Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated. 展开更多
关键词 water-releasing material high strength concrete expansive internal curing
下载PDF
Numerical Simulation of Warm Forming Behavior of High Strength Aluminum Alloy 7075 被引量:3
15
作者 Wang Hui Yan Dawei +1 位作者 Liang Yangmin Xie Guoyin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期620-625,共6页
Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room te... Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room temperature in the automotive industry.However,material at elevated temperature behaves more differently than at room temperature and specific material parameters and models need to be developed for the simulation of warm forming.Based on the experimental investigation of material behavior of high strength aluminum alloy 7075(AA7075),constitutive equations with strain rate sensitivity at 140,180 and 220 ℃ are developed.Anisotropic yield criterion Barlat 89 is used in the simulation.Warm forming of limit dome height tests and limit drawing ratio tests of AA7075 at 140,180 and 220℃are performed.Forming limit diagrams developed from experiment at several elevated temperatures in the previous study are used to predict the failure in the simulation results.Punch force and displacement predicted from simulation are compared with the experimental data.Simulation results agree with experimental results,so the developed material model can be used to accurately predict material behavior during isothermal warm forming of the AA7075-T6 alloy. 展开更多
关键词 high strength aluminum alloy warm forming numerical simulation material model
下载PDF
Coal and gas outburst prevention using new high water content cement slurry for injection into the coal seam 被引量:3
16
作者 Zhou Peiling Zhang Yinghua +3 位作者 Huang Zhi'an Gao Yukun Wang Hui Luo Qiang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期669-673,共5页
As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen t... As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen the seam, increase its rigidity coefficient(f), and reduce the volumetric expansion due to gas energy release.This paper reports the results of laboratory experiments on cement-based high water content slurry having different water-cement ratios(W/C) to be used for coal injection. The results show that as the W/C increases, the mobility of the slurry and its setting time increase. The compressive strength and rupture strength, however, are reduced. Furthermore, high W/C grout shows early strength after 7 days, which can be 80% of its 14-day compressive strength. To achieve rapid setting and early strength, the addition of Na_2SiO_3has proven to give the best result, when the concentration of the additive is 3%. The initial and final setting times are 13 and 21 min shorter than samples without Na_2SiO_3, while the compressive strength is more than double. As a retarder, the initial setting time can be extended to 83 min when tartaric acid of 0.4% concentration is added. Through the orthogonal experiment, the optimum recipe of the new high water content slurry has been determined to be: W/C = 2, tartaric acid = 0.2%, Na_2SiO_3= 3%, and12% bentonite. Reinforcement by injection simulation experiments show that the grouting radius of the new slurry mix is 250 mm when the applied grouting pressure is 60 k Pa, 7-day rupture strength and compressive strength are 5.2 and 6.4 MPa, respectively, and are 37% and 88% higher than ordinary cement grout. It can be concluded that the newly developed slurry mix is more effective than the ordinary mix for reinforcing coal and controlling gas outburst. 展开更多
关键词 Gas outburst Setting liquid Reinforce coal high-water solidified materials Rapid setting and early strength cement RETARDER
下载PDF
Compression fracture behavior and mechanical properties of ultra high pressure solidified titanium-aluminium intermetallics
17
作者 魏尊杰 李智伟 王宏伟 《中国有色金属学会会刊:英文版》 CSCD 2005年第S2期105-109,共5页
The compression fracture behavior and mechanical properties of Ti80Al alloy and Ti48Al alloy solidified under 5.5GPa pressure condition were studied. The results show that the fracture of Ti80Al alloy solidified und... The compression fracture behavior and mechanical properties of Ti80Al alloy and Ti48Al alloy solidified under 5.5GPa pressure condition were studied. The results show that the fracture of Ti80Al alloy solidified under high pressure has the characters of cleavage fracture and intergranular crack differing with cleavage fracture of that under vacuum. The fracture of Ti48Al alloy solidified under high pressure is cleavage fracture like that under vacuum. The compression strength of vacuum condition solidified Ti80Al alloy is 316MPa. However when the solidification pressure is increased to 5.5GPa, the compression strength of Ti80Al is increased to 440MPa. In the mean time, during ultra high pressure solidification the hardness of Ti80Al alloy and Ti48Al alloy increase from 8.755GPa and 5.408GPa under vacuum to 9.572GPa and 6.227GPa respectively, and elastic modulus also increase from 279.3GPa and 232.3GPa under vacuum to 295.8GPa to 252.9GPa respectively. 展开更多
关键词 TiAl3 INTERMETALLICS ultra high pressure compression fracture behavior compression strength hardness
下载PDF
MODIFICATION THE CEMENTIOUS MATERIAL OF ULTRA-HIGH-STRENGTH SLEEPER CONCRETE
18
作者 崔崇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2000年第2期28-34,共7页
This paper presents investigation results on the natural ultra-fine mineral flour of crystalline silica fume (CSF) and porous quartz sand stone (PQSS) which can modify cement mortar strength under hydrothermal synthe... This paper presents investigation results on the natural ultra-fine mineral flour of crystalline silica fume (CSF) and porous quartz sand stone (PQSS) which can modify cement mortar strength under hydrothermal synthesis reaction (HSR) in the autoclave-cured condition. The replacement of cement by CSF and PQSS can signifi cantly increase the Jflerural and compressive strength which reach 22MPa and 150MPa respectively and de-crease the porosity oj the cement mortar. The ratio oj fine aggregation, standard sand to cementions material has sig nificant influence on the mortar strength. The mechanisms involved in cement and natural mineral flour and the HSR are presented. CaO/SiO2 ratio ranges from 3. 20 to 1. 11. the main hydrate phase is C2SH and there is not Tober-morite through X-Ray diffraction qualitative analysis. The new and ultra-high strength cementious material as basic material of sleeper concrete can he used in prestressed reinforcement sleeper concrete. 展开更多
关键词 crystalline silica furne ultra-fine natural mineral flour sleeper concrete ultra high strength cementious material
下载PDF
Fabrication of Aluminium Matrix Composite Using Thixoforming Process for High Strength Material Components
19
作者 Yusuf Afandi and Anne Zulfia 《材料科学与工程(中英文A版)》 2019年第4期149-152,共4页
Aluminium-based MMCs(metal matrix composites)have many potential applications in the automotive manufacturing industry,aerospace and military because the aluminum has a low density.Aluminum as a matrix with Al2O3 rein... Aluminium-based MMCs(metal matrix composites)have many potential applications in the automotive manufacturing industry,aerospace and military because the aluminum has a low density.Aluminum as a matrix with Al2O3 reinforcement has attracted interest to be developed in order to improve the mechanical property.The study carried out the formation of Al-5%Cu-4%Mg matrix with the reinforcement of Al2O3 by thixoforming process.In this paper,we studied the effect of semisolid thixoforming process on strength of Al-5%Cu-4%Mg matrix.The matrix used here was doped by Al2O3 with the volume fraction from 5%to 20%.It is found that strength of MMCs significantly increases with increasing volume fraction of Al2O3 reinforcement from 5%to 20%.This is due to a good wettability in interface region such as formation of spinel MgAl2O4 phase.Moreover,toughness of MMCs increases by process of semisolid thixoforming due to evolution of microstructure such as globular and fine grain structures.These results indicate that the thixocasting process conducted in this study could increase the value of the matrix hardness and tensile strength,so that such process opens up opportunity for application in the manufacturing industry. 展开更多
关键词 MMCS Al-5%Cu-4%Mg semisolid thixoforming Al2O3 reinforcement high strength material
下载PDF
High efficient processing area of difficult-to-machine materials by using temperature-horsepower criterion
20
作者 ANGELA S G ZHANG Dan SERGEY B V MARINA K A 《黑龙江科技大学学报》 CAS 2015年第4期386-393,共8页
关键词 俄语学习 外语学习 学习方法 俄语翻译
下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部