To explore the behavior of radiolytically produced hydrogen release from the waste resin stored in a high integrated container(HIC), and the mechanism of hydrogen diffusion in a near-surface disposal facility, both ex...To explore the behavior of radiolytically produced hydrogen release from the waste resin stored in a high integrated container(HIC), and the mechanism of hydrogen diffusion in a near-surface disposal facility, both experimental studies and numerical simulations were performed through an accelerated irradiation test and simulated disposal, respectively. Results indicated that,100 years after disposal, the highest hydrogen concentration appeared in the cell where the HICs were placed. The volume fraction for different scenarios postulated in the numerical simulation was 2.64% for Scenario 1, 2.28% for Scenario 2, and 3.965% for Scenario 3, all of which are lower than the hydrogen explosion limit of 4.1%. The results indicated that the simulated HIC disposal scheme is safe.展开更多
文摘To explore the behavior of radiolytically produced hydrogen release from the waste resin stored in a high integrated container(HIC), and the mechanism of hydrogen diffusion in a near-surface disposal facility, both experimental studies and numerical simulations were performed through an accelerated irradiation test and simulated disposal, respectively. Results indicated that,100 years after disposal, the highest hydrogen concentration appeared in the cell where the HICs were placed. The volume fraction for different scenarios postulated in the numerical simulation was 2.64% for Scenario 1, 2.28% for Scenario 2, and 3.965% for Scenario 3, all of which are lower than the hydrogen explosion limit of 4.1%. The results indicated that the simulated HIC disposal scheme is safe.