Based on the different hydrophobicities of the intermediates of proteins the various conformational intermediates of the refolding of a-amylase originally denatured with 8.0 mol/L urea solution were separated with hi...Based on the different hydrophobicities of the intermediates of proteins the various conformational intermediates of the refolding of a-amylase originally denatured with 8.0 mol/L urea solution were separated with high performance hydrophobic interaction chromatography(HPHIC). Compared to the separation of the same intermediates with weak anion exchange chromatography and size-exclusion chromatography the result obtained with HPHIC is the best It would be expected that HPHIC may be a strongly potential tool to separate intermediates of some proteins which cannot be, or cannot completely be refolded by HPHIC.展开更多
Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us t...Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of ω1, ω2 and ω3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.展开更多
NaY and ion exchanged NaNH4Y zeolite with NH4NO3 were used as the support to prepare CuY cata‐lysts by a high temperature anhydrous interaction between the support and copper (II) acety‐lacetonate Cu(acac)2. The...NaY and ion exchanged NaNH4Y zeolite with NH4NO3 were used as the support to prepare CuY cata‐lysts by a high temperature anhydrous interaction between the support and copper (II) acety‐lacetonate Cu(acac)2. The catalysts were used for the oxidative carbonylation of methanol to dime‐thyl carbonate (DMC) at atmospheric pressure. The textural and acidic properties of NaNH4Y zeolite and the CuY catalysts were investigated by X‐ray diffraction, scanning electron microscopy, N2 ad‐sorption‐desorption, temperature programmed reduction of H2, X‐ray photoelectron spectroscopy and temperature programmed desorption of NH3. With increasing NH4NO3 concentration, the NH4+exchange degree increased while the crystallinity of the zeolite remained intact. Crystalline CuO was formed when the NH4+exchange degree of NaNH4Y was low, and the corresponding CuY catalyst showed low catalytic activity. With increasing of the NH4+exchange degree of NaNH4Y, the content of surface bound Cu+active centers increased and the catalytic activity of the corresponding CuY catalyst also increased. The surface bound Cu+content reached its maximum when the NH4+ex‐change degree of NaNH4Y reached towards saturation. The CuY exhibited optimal catalytic activity with 267.3 mg/(g·h) space time yield of DMC, 6.9%conversion of methanol, 68.5%selectivity of DMC.展开更多
Severe flooding occurred in southern and northern China during the summer of 2016 when the 2015 super El Nio decayed to a normal condition. However, the mean precipitation during summer(June–July-August) 2016 does ...Severe flooding occurred in southern and northern China during the summer of 2016 when the 2015 super El Nio decayed to a normal condition. However, the mean precipitation during summer(June–July-August) 2016 does not show significant anomalies, suggesting that — over East Asia(EA) — seasonal mean anomalies have limited value in representing hydrological hazards. Scrutinizing season-evolving precipitation anomalies associated with 16 El Nio episodes during 1957–2016 reveals that, over EA, the spatiotemporal patterns among the four categories of El Nio events are quite variable, due to a large range of variability in the intensity and evolution of El Nio events and remarkable subseasonal migration of the rainfall anomalies. The only robust seasonal signal is the dry anomalies over central North China during the El Nio developing summer. Distinguishing strong and weak El Nio impacts is important. Only strong El Nio events can persistently enhance EA subtropical frontal precipitation from the peak season of El Nio to the ensuing summer, by stimulating intense interaction between the anomalous western Pacific anticyclone(WPAC) and underlying dipolar sea surface temperature anomalies in the Indo-Pacific warm pool, thereby maintaining the WPAC and leading to a prolonged El Nio impact on EA. A weak El Nio may also enhance the post-El Nio summer rainfall over EA, but through a different physical process: the WPAC re-emerges as a forced response to the rapid cooling in the eastern Pacific. The results suggest that the skillful prediction of rainfall over continental EA requires the accurate prediction of not only the strength and evolution of El Nio, but also the subseasonal migration of EA rainfall anomalies.展开更多
The renaturation of the denaturedα-chymotrypsin(α-Chy)with 1.7 mol·L^(-1)guanidine hydrochloride(GuHCI)by three kinds of stationary phase of high performance hydrophobic interaction chromatography(STHIC)with a ...The renaturation of the denaturedα-chymotrypsin(α-Chy)with 1.7 mol·L^(-1)guanidine hydrochloride(GuHCI)by three kinds of stationary phase of high performance hydrophobic interaction chromatography(STHIC)with a comparable hydrophobicity but different ligand structures was investigated.The obtained result indicates that the ligand structures of the three STHIC contribute to the renaturation efficiency ofα-Chy in the order of the end ligands PEG-600<phenyl group<tetrahydrofurfuryl alcohol(THFA).展开更多
The correlation between the Arctic Oscillation (AO) and ENSO reflects the strength of the interaction between climate systems in the low and high latitudes. Based on the long-term (501 years) control simulation of...The correlation between the Arctic Oscillation (AO) and ENSO reflects the strength of the interaction between climate systems in the low and high latitudes. Based on the long-term (501 years) control simulation of CCSM4, the authors investigated the linkage between the AO and ENSO in boreal winter. Based on the correlation coefficients between them, the authors divided the entire period into two groups: one that included the years with statistically significant correlations (G1), and the other the years with insignificant correlations (G2). in G1, the AO-related atmospheric circulation pattern resembles the ENSO-related one. The Aleutian Low (AL) acts as a bridge linking these two modes, in G2, however, the AO and ENSO signals are confined to the mid-high and mid-low latitudes, respectively. There is no significant linkage between the AO and ENSO in boreal winter, showing a low correlation coefficient. Further analysis suggests that changes in the climatological features, including the strengthened AO, the negative Pacific Decadal Oscillation phase, and the weakened AL, may be responsible for the enhanced relationships.展开更多
Studies on the atmospheric structure over the Antarctic Plateau are important for better understanding the weather and climate systems of polar regions.In the summer of 2017,an observational experiment was conducted a...Studies on the atmospheric structure over the Antarctic Plateau are important for better understanding the weather and climate systems of polar regions.In the summer of 2017,an observational experiment was conducted at Dome-A,the highest station in Antarctica,with a total of 32 profiles obtained from global positioning system(GPS)radiosondes.Based on observational data,the atmospheric temperature,humidity,and wind structures and their variations are investigated,and compared with those from four other stations inside the Antarctic circle.Distinguished thermal and dynamic structures were revealed over Dome-A,characterized by the lowest temperature,the highest tropopause,the largest lapse rate,and the most frequent temperature and humidity inversion.During the experiment,a prominent blocking event was identified,with great influence on the atmospheric structure over Dome-A.The blocking high produced a strong anticyclone that brought warm and moist air to the hinterland of the Antarctic Plateau,causing a much warmer,wetter,and windier troposphere over the Dome-A station.Meanwhile,a polar air mass was forced out of the Antarctic,formed a cold surge extending as far as southern New Zealand and affected the weather there.Our results proved that there would be a direct interaction between the atmosphere over the hinterland of the Antarctic Plateau and mid latitudes with the action of a blocking high.Further studies are needed to explore the interaction between the atmospheric systems over the Antarctic and mid latitudes under intense synoptic disturbance,with longterm data and numerical modeling.展开更多
Terahertz(THz) generation by periodically-poled RbTiOPO_4(PPRTP) with a quasi-phase-matching scheme based on cascaded difference frequency generation(DFG) processes is theoretically analyzed. The cascaded Stokes and a...Terahertz(THz) generation by periodically-poled RbTiOPO_4(PPRTP) with a quasi-phase-matching scheme based on cascaded difference frequency generation(DFG) processes is theoretically analyzed. The cascaded Stokes and anti-Stokes interaction processes are investigated from coupled wave equations. The THz intensities and quantum conversion efficiency are calculated. Compared with that of non-cascaded DFG processes, the THz intensity in 7-order cascaded DFG processes is increased to 2.95 times. The quantum conversion efficiency of 149.9% in cascaded processes can be realized, which exceeds the Manley-Rowe limit.展开更多
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear,multi-dimensional parameter space.This limits the utility of sequential 1D scanning of experimental parameters for ...The interaction of relativistically intense lasers with opaque targets represents a highly non-linear,multi-dimensional parameter space.This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation,although to-date this has been the accepted methodology due to low data acquisition rates.High repetition-rate(HRR)lasers augmented by machine learning present a valuable opportunity for efficient source optimization.Here,an automated,HRR-compatible system produced high-fidelity parameter scans,revealing the influence of laser intensity on target pre-heating and proton generation.A closed-loop Bayesian optimization of maximum proton energy,through control of the laser wavefront and target position,produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60%of the laser energy.This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.展开更多
文摘Based on the different hydrophobicities of the intermediates of proteins the various conformational intermediates of the refolding of a-amylase originally denatured with 8.0 mol/L urea solution were separated with high performance hydrophobic interaction chromatography(HPHIC). Compared to the separation of the same intermediates with weak anion exchange chromatography and size-exclusion chromatography the result obtained with HPHIC is the best It would be expected that HPHIC may be a strongly potential tool to separate intermediates of some proteins which cannot be, or cannot completely be refolded by HPHIC.
文摘Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of ω1, ω2 and ω3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.
基金supported by the National Natural Science Foundation of China (21276169)~~
文摘NaY and ion exchanged NaNH4Y zeolite with NH4NO3 were used as the support to prepare CuY cata‐lysts by a high temperature anhydrous interaction between the support and copper (II) acety‐lacetonate Cu(acac)2. The catalysts were used for the oxidative carbonylation of methanol to dime‐thyl carbonate (DMC) at atmospheric pressure. The textural and acidic properties of NaNH4Y zeolite and the CuY catalysts were investigated by X‐ray diffraction, scanning electron microscopy, N2 ad‐sorption‐desorption, temperature programmed reduction of H2, X‐ray photoelectron spectroscopy and temperature programmed desorption of NH3. With increasing NH4NO3 concentration, the NH4+exchange degree increased while the crystallinity of the zeolite remained intact. Crystalline CuO was formed when the NH4+exchange degree of NaNH4Y was low, and the corresponding CuY catalyst showed low catalytic activity. With increasing of the NH4+exchange degree of NaNH4Y, the content of surface bound Cu+active centers increased and the catalytic activity of the corresponding CuY catalyst also increased. The surface bound Cu+content reached its maximum when the NH4+ex‐change degree of NaNH4Y reached towards saturation. The CuY exhibited optimal catalytic activity with 267.3 mg/(g·h) space time yield of DMC, 6.9%conversion of methanol, 68.5%selectivity of DMC.
基金supported by the National Natural Science Foundation of China (Grant No. 41420104002)the National Research Foundation of Korea through a Global Research Laboratory grant of the Korean Ministry of Education, Science and Technology (Grant No. 2011-0021927)+1 种基金the Atmosphere–Ocean Research Center (AORC)funded by Nanjing University of Information Science and Technology (NUIST)
文摘Severe flooding occurred in southern and northern China during the summer of 2016 when the 2015 super El Nio decayed to a normal condition. However, the mean precipitation during summer(June–July-August) 2016 does not show significant anomalies, suggesting that — over East Asia(EA) — seasonal mean anomalies have limited value in representing hydrological hazards. Scrutinizing season-evolving precipitation anomalies associated with 16 El Nio episodes during 1957–2016 reveals that, over EA, the spatiotemporal patterns among the four categories of El Nio events are quite variable, due to a large range of variability in the intensity and evolution of El Nio events and remarkable subseasonal migration of the rainfall anomalies. The only robust seasonal signal is the dry anomalies over central North China during the El Nio developing summer. Distinguishing strong and weak El Nio impacts is important. Only strong El Nio events can persistently enhance EA subtropical frontal precipitation from the peak season of El Nio to the ensuing summer, by stimulating intense interaction between the anomalous western Pacific anticyclone(WPAC) and underlying dipolar sea surface temperature anomalies in the Indo-Pacific warm pool, thereby maintaining the WPAC and leading to a prolonged El Nio impact on EA. A weak El Nio may also enhance the post-El Nio summer rainfall over EA, but through a different physical process: the WPAC re-emerges as a forced response to the rapid cooling in the eastern Pacific. The results suggest that the skillful prediction of rainfall over continental EA requires the accurate prediction of not only the strength and evolution of El Nio, but also the subseasonal migration of EA rainfall anomalies.
基金supported by the National Natu-ral Science Foundation of China(Grant Nos.39880003&20175016).
文摘The renaturation of the denaturedα-chymotrypsin(α-Chy)with 1.7 mol·L^(-1)guanidine hydrochloride(GuHCI)by three kinds of stationary phase of high performance hydrophobic interaction chromatography(STHIC)with a comparable hydrophobicity but different ligand structures was investigated.The obtained result indicates that the ligand structures of the three STHIC contribute to the renaturation efficiency ofα-Chy in the order of the end ligands PEG-600<phenyl group<tetrahydrofurfuryl alcohol(THFA).
基金jointly supported by the Special Fund for the Public Welfare Industry(Meteorology)[grant number 201306026]National Natural Science Foundation of China[grant numbers41130103,41205054,and 41205051]
文摘The correlation between the Arctic Oscillation (AO) and ENSO reflects the strength of the interaction between climate systems in the low and high latitudes. Based on the long-term (501 years) control simulation of CCSM4, the authors investigated the linkage between the AO and ENSO in boreal winter. Based on the correlation coefficients between them, the authors divided the entire period into two groups: one that included the years with statistically significant correlations (G1), and the other the years with insignificant correlations (G2). in G1, the AO-related atmospheric circulation pattern resembles the ENSO-related one. The Aleutian Low (AL) acts as a bridge linking these two modes, in G2, however, the AO and ENSO signals are confined to the mid-high and mid-low latitudes, respectively. There is no significant linkage between the AO and ENSO in boreal winter, showing a low correlation coefficient. Further analysis suggests that changes in the climatological features, including the strengthened AO, the negative Pacific Decadal Oscillation phase, and the weakened AL, may be responsible for the enhanced relationships.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19070401)Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0105)+1 种基金National Natural Science Foundation of China(41830968)CAS Key Subordinate Projects(KGFZD-135-16-023 and KFZD-SW-426)。
文摘Studies on the atmospheric structure over the Antarctic Plateau are important for better understanding the weather and climate systems of polar regions.In the summer of 2017,an observational experiment was conducted at Dome-A,the highest station in Antarctica,with a total of 32 profiles obtained from global positioning system(GPS)radiosondes.Based on observational data,the atmospheric temperature,humidity,and wind structures and their variations are investigated,and compared with those from four other stations inside the Antarctic circle.Distinguished thermal and dynamic structures were revealed over Dome-A,characterized by the lowest temperature,the highest tropopause,the largest lapse rate,and the most frequent temperature and humidity inversion.During the experiment,a prominent blocking event was identified,with great influence on the atmospheric structure over Dome-A.The blocking high produced a strong anticyclone that brought warm and moist air to the hinterland of the Antarctic Plateau,causing a much warmer,wetter,and windier troposphere over the Dome-A station.Meanwhile,a polar air mass was forced out of the Antarctic,formed a cold surge extending as far as southern New Zealand and affected the weather there.Our results proved that there would be a direct interaction between the atmosphere over the hinterland of the Antarctic Plateau and mid latitudes with the action of a blocking high.Further studies are needed to explore the interaction between the atmospheric systems over the Antarctic and mid latitudes under intense synoptic disturbance,with longterm data and numerical modeling.
基金supported by the National Natural Science Foundation of China(Nos.61201101,61601183 and 61205003)the Young Backbone Teachers in University of Henan Province(No.2014GGJS-065)+1 种基金the Foundation and Advanced Technology Research Program of Henan Province(No.162300410269)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.16IRTSTHN017)
文摘Terahertz(THz) generation by periodically-poled RbTiOPO_4(PPRTP) with a quasi-phase-matching scheme based on cascaded difference frequency generation(DFG) processes is theoretically analyzed. The cascaded Stokes and anti-Stokes interaction processes are investigated from coupled wave equations. The THz intensities and quantum conversion efficiency are calculated. Compared with that of non-cascaded DFG processes, the THz intensity in 7-order cascaded DFG processes is increased to 2.95 times. The quantum conversion efficiency of 149.9% in cascaded processes can be realized, which exceeds the Manley-Rowe limit.
基金support from the UK STFC grants ST/V001639/1 with the XFEL Physical Sciences Hub and ST/P002021/1the UK EPSRC grants EP/V049577/1 and EP/R006202/1+5 种基金as well as the U.S.DOE Office of Science,Fusion Energy Sciences under FWP No.100182in part by the National Science Foundation under Grant No.1632708 and Award No.PHY–1903414M.J.V.S.acknowledges support from the Royal Society URFR1221874support from the DOE NNSA SSGF program under DE-NA0003960support from the U.S.DOE grant DESC0016804support from the project‘Advanced research using high-intensity laser-produced photons and particles’(CZ.02.1.01/0.0/0.0/16_019/0000789)from the European Regional Development Fund(ADONIS)。
文摘The interaction of relativistically intense lasers with opaque targets represents a highly non-linear,multi-dimensional parameter space.This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation,although to-date this has been the accepted methodology due to low data acquisition rates.High repetition-rate(HRR)lasers augmented by machine learning present a valuable opportunity for efficient source optimization.Here,an automated,HRR-compatible system produced high-fidelity parameter scans,revealing the influence of laser intensity on target pre-heating and proton generation.A closed-loop Bayesian optimization of maximum proton energy,through control of the laser wavefront and target position,produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60%of the laser energy.This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.