A novel partial silicon-on-insulator (PSOI) high voltage device with a low-k (relative permittivity) dielectric buried layer (LK PSOI) and its breakdown mechanism are presented and investigated by MEDICI. At a l...A novel partial silicon-on-insulator (PSOI) high voltage device with a low-k (relative permittivity) dielectric buried layer (LK PSOI) and its breakdown mechanism are presented and investigated by MEDICI. At a low k value the electric field strength in the dielectric buried layer (EI) is enhanced and a Si window makes the substrate share the vertical drop, resulting in a high vertical breakdown voltage; in the lateral direction, a high electric field peak is introduced at the Si window, which modulates the electric field distribution in the SOI layer; consequently, a high breakdown voltage (BV) is obtained. The values of EI and BV of LK PSOI with ki = 2 on a 2μm thick SOI layer over 1μm thick buried layer are enhanced by 74% and 19%, respectively, compared with those of the conventional PSOI. Furthermore, the Si window also alleviates the self-heating effect.展开更多
The short-channel performance of typical 70nm MOSFETs with high K gate dielectric is widely studied by using a two dimensional(2-D) device simulator.The short-channel performance is degraded from the fringing field a...The short-channel performance of typical 70nm MOSFETs with high K gate dielectric is widely studied by using a two dimensional(2-D) device simulator.The short-channel performance is degraded from the fringing field and lower the source/drain junction resistance.The sidewall material is found very useful to eliminate the fringing-induced berrier lowing effect.展开更多
Classical atomistic simulations based on the lattice dynalnics theory and the Born core-shell model are performed to systematically study the crystal structure and thermal properties of high-k Hfl-xSixO2. The coeffici...Classical atomistic simulations based on the lattice dynalnics theory and the Born core-shell model are performed to systematically study the crystal structure and thermal properties of high-k Hfl-xSixO2. The coefficients of thermal expansion, specific heat, Griineisen parameters, phonon densities of states and Debye temperatures are calculated at different temperatures and for different Si-doping concentrations. With the increase of the Si-doping concentration, the lattice constant decreases. At the same time, both the coefficient of thermal expansion and the specific heat at a constant volume of Hf1-mSixO2 also decreases. The Griineisen parameter is about 0.95 at temperatures less than 100 K. Compared with Si-doped HfO2, pure HfO2 has a higher Debye temperature when the temperature is less than 25 K, while it has lower Debye temperature when the temperature is higher than 50 K. Some simulation results fit well with the experimental data. We expect that our results will be helpful for understanding the local lattice structure and thermal properties of Hf1-mSixO2.展开更多
In this paper, a surface potential based threshold voltage model of fully-depleted(FD) recessed-source/drain(Re-S/D)silicon-on-insulator(SOI) metal-oxide semiconductor field-effect transistor(MOSFET) is presen...In this paper, a surface potential based threshold voltage model of fully-depleted(FD) recessed-source/drain(Re-S/D)silicon-on-insulator(SOI) metal-oxide semiconductor field-effect transistor(MOSFET) is presented while considering the effects of high-k gate-dielectric material induced fringing-field. The two-dimensional(2D) Poisson's equation is solved in a channel region in order to obtain the surface potential under the assumption of the parabolic potential profile in the transverse direction of the channel with appropriate boundary conditions. The accuracy of the model is verified by comparing the model's results with the 2D simulation results from ATLAS over a wide range of channel lengths and other parameters,including the dielectric constant of gate-dielectric material.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 60806025 and 60976060)the National Laboratory of Analog Integrated Circuit (Grant No. 9140C0903070904)the Youth Teacher Foundation of the University of Electronic Science and Technology of China (Grant No. jx0721)
文摘A novel partial silicon-on-insulator (PSOI) high voltage device with a low-k (relative permittivity) dielectric buried layer (LK PSOI) and its breakdown mechanism are presented and investigated by MEDICI. At a low k value the electric field strength in the dielectric buried layer (EI) is enhanced and a Si window makes the substrate share the vertical drop, resulting in a high vertical breakdown voltage; in the lateral direction, a high electric field peak is introduced at the Si window, which modulates the electric field distribution in the SOI layer; consequently, a high breakdown voltage (BV) is obtained. The values of EI and BV of LK PSOI with ki = 2 on a 2μm thick SOI layer over 1μm thick buried layer are enhanced by 74% and 19%, respectively, compared with those of the conventional PSOI. Furthermore, the Si window also alleviates the self-heating effect.
文摘The short-channel performance of typical 70nm MOSFETs with high K gate dielectric is widely studied by using a two dimensional(2-D) device simulator.The short-channel performance is degraded from the fringing field and lower the source/drain junction resistance.The sidewall material is found very useful to eliminate the fringing-induced berrier lowing effect.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10964003 and 11164014)the Natural Science Foundation of Gansu Province, China (Grant No. 096RJZA102)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20096201120002)the China Postdoctoral Science Foundation (Grant Nos. 20100470886 and 201104324)
文摘Classical atomistic simulations based on the lattice dynalnics theory and the Born core-shell model are performed to systematically study the crystal structure and thermal properties of high-k Hfl-xSixO2. The coefficients of thermal expansion, specific heat, Griineisen parameters, phonon densities of states and Debye temperatures are calculated at different temperatures and for different Si-doping concentrations. With the increase of the Si-doping concentration, the lattice constant decreases. At the same time, both the coefficient of thermal expansion and the specific heat at a constant volume of Hf1-mSixO2 also decreases. The Griineisen parameter is about 0.95 at temperatures less than 100 K. Compared with Si-doped HfO2, pure HfO2 has a higher Debye temperature when the temperature is less than 25 K, while it has lower Debye temperature when the temperature is higher than 50 K. Some simulation results fit well with the experimental data. We expect that our results will be helpful for understanding the local lattice structure and thermal properties of Hf1-mSixO2.
基金supported by the Science and Engineering Research Board(SERB),Department of Science and Technology,Ministry of Human Resource and Development,Government of India under Young Scientist Research(Grant No.SB/FTP/ETA-415/2012)
文摘In this paper, a surface potential based threshold voltage model of fully-depleted(FD) recessed-source/drain(Re-S/D)silicon-on-insulator(SOI) metal-oxide semiconductor field-effect transistor(MOSFET) is presented while considering the effects of high-k gate-dielectric material induced fringing-field. The two-dimensional(2D) Poisson's equation is solved in a channel region in order to obtain the surface potential under the assumption of the parabolic potential profile in the transverse direction of the channel with appropriate boundary conditions. The accuracy of the model is verified by comparing the model's results with the 2D simulation results from ATLAS over a wide range of channel lengths and other parameters,including the dielectric constant of gate-dielectric material.