There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucia...There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucial for the development of high-energy-density cathodes.Here we present highperformance aqueous zinc-manganese batteries with reversible Mn2+/Mn4+ double redox.The active Mn4+is generated in situ from the Mn2+-containing MnOx nanoparticles and electrolyte.Benefitting from the low crystallinity of the birnessite-type MnO2 as well as the electrolyte with Mn2+additive,the MnOX cathode achieves an ultrahigh energy density with a peak of845.1 Wh kg-1 and an ultralong lifespan of 1500 cycles.The combination of electrochemical measurements and material characterization reveals the reversible Mn2+/Mn4+double redox(birnessite-type MnO2? monoclinic MnOOH and spinel ZnMn2O4 H?Mn2+ions).The reversible Mn2+/Mn4+double redox electrode reaction mechanism offers new opportunities for the design of low-cost,high-energy-density cathodes for advanced rechargeable aqueous batteries.展开更多
The deoiled asphalt as the carbon source and the ferrocene as the metal source and the catalyst precursor were chosen to synthesize iron-containing carbon microparticles through co-carbonization at the temperature of ...The deoiled asphalt as the carbon source and the ferrocene as the metal source and the catalyst precursor were chosen to synthesize iron-containing carbon microparticles through co-carbonization at the temperature of about 450℃ for 3 h. The resulting products were treated at 2 000 ℃ for 2 h. All samples were examined by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The results show that the iron particles in the heat-treated material are completely coated by carbon. In addition to the fully filled carbon microparticles as well as hollow carbon ones, also form carbon fibers with hollow centers. The formation mechanism of the as-prepared products was discussed briefly.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51772331)the National Key Technologies R&D Program(Grant No.2018YFB1106000).
文摘There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucial for the development of high-energy-density cathodes.Here we present highperformance aqueous zinc-manganese batteries with reversible Mn2+/Mn4+ double redox.The active Mn4+is generated in situ from the Mn2+-containing MnOx nanoparticles and electrolyte.Benefitting from the low crystallinity of the birnessite-type MnO2 as well as the electrolyte with Mn2+additive,the MnOX cathode achieves an ultrahigh energy density with a peak of845.1 Wh kg-1 and an ultralong lifespan of 1500 cycles.The combination of electrochemical measurements and material characterization reveals the reversible Mn2+/Mn4+double redox(birnessite-type MnO2? monoclinic MnOOH and spinel ZnMn2O4 H?Mn2+ions).The reversible Mn2+/Mn4+double redox electrode reaction mechanism offers new opportunities for the design of low-cost,high-energy-density cathodes for advanced rechargeable aqueous batteries.
基金National Basic Research Program of China (2004CB217808)National Natural Science Foundation of China (20471041, 90306014)+1 种基金Natural Science Foundation of Shanxi Province (20051018)Shanxi Research Fund for Returned Scholars (200428)
文摘The deoiled asphalt as the carbon source and the ferrocene as the metal source and the catalyst precursor were chosen to synthesize iron-containing carbon microparticles through co-carbonization at the temperature of about 450℃ for 3 h. The resulting products were treated at 2 000 ℃ for 2 h. All samples were examined by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The results show that the iron particles in the heat-treated material are completely coated by carbon. In addition to the fully filled carbon microparticles as well as hollow carbon ones, also form carbon fibers with hollow centers. The formation mechanism of the as-prepared products was discussed briefly.