The spatial-temporal relationship between high-quality source rocks and reservoirs is a key factor when evaluating the formation,occurrence,and prospectivity of tight oil and gas reservoirs.In this study,we analyze th...The spatial-temporal relationship between high-quality source rocks and reservoirs is a key factor when evaluating the formation,occurrence,and prospectivity of tight oil and gas reservoirs.In this study,we analyze the fundamental oil and gas accumulation processes occurring in the Songliao Basin,contrasting tight oil sand reservoirs in the south with tight gas sand reservoirs in the north.This is done using geochemical data,constant-rate and conventional mercury injection experiments,and fluid inclusion analyses.Our results demonstrate that as far as fluid mobility is concerned,the expulsion center coincides with the overpressure zone,and its boundary limits the occurrence of tight oil and gas accumulations.In addition,the lower permeability limit of high-quality reservoirs,controlled by pore-throat structures,is 0.1×10^-3μm^2 in the fourth member of the Lower Cretaceous Quantou Formation(K1q^4)in the southern Songliao Basin,and 0.05×10^-3μm^2 in the Lower Cretaceous Shahezi Formation(K1sh)in the northern Songliao Basin.Furthermore,the results indicate that the formation of tight oil and gas reservoirs requires the densification of reservoirs prior to the main phase of hydrocarbon expulsion from the source rocks.Reservoir“sweet spots”develop at the intersection of high-quality source rocks(with high pore pressure)and reservoirs(with high permeability).展开更多
The large scale development of high natural gamma sandstones has been discovered in the Chang 73 Submember of the Triassic Yanchang Formation in the Ordos Basin, China. High natural gamma sandstones consist of terrige...The large scale development of high natural gamma sandstones has been discovered in the Chang 73 Submember of the Triassic Yanchang Formation in the Ordos Basin, China. High natural gamma sandstones consist of terrigenous detrital rocks with particle sizes ranging from silt to sand. They represent turbidite deposits characterized by high gamma ray values that are more than 180 American Petroleum Institute (API) units on a natural gamma ray log profile. For a long time, very high natural gamma sandstones had been identified as high-quality source rocks, such as oil shales, from conventional well log profiles, such as natural gamma ray well logs. Therefore, predicting the distribution of high natural gamma sandstones was studied. The sedimentary, lithological, and well log characteristics, as well as the genesis of the high radioactivity of high natural gamma sandstones were analyzed in the Chang 73 Submember. Thorium (Th), uranium (U) and other radioactive elements were found, carried by deep hydrothermal activity, and probably resulted in the formation of a relatively high radioactive zone in the cross-section, where high natural gamma sandstones usually develop in large quantities. This caused many turbidite sand bodies, which should have a continuous distribution in the cross-section, to appear to have a discontinuous distribution, when using conventional well log profiles, such as natural gamma ray well logs. From the above mentioned apparent discontinuous distribution of turbidite sand bodies in the cross-section, a continuous distribution can be predicted. It is obvious that the prediction of areas of continuous turbidite sand bodies in the cross-section usually corresponds with areas where high natural gamma sandstones are developed in large quantities. Exploration and development practice demonstrated that the developed method is fast and effective in predicting high natural gamma sandstones in the Chang 73 Submember.展开更多
The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the ...The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.展开更多
Recently, more attention has been paid on the high gamma sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China. These high gamma sandstones have logging characteristics different from conventional s...Recently, more attention has been paid on the high gamma sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China. These high gamma sandstones have logging characteristics different from conventional sandstones, which influences the identification of sandstone reservoirs. Zhang et al (2010) proposed that the high gamma sandstones of the Yanchang Formation might be the result of re-deposition of homochronous sedimentary tufts or previous tufts as a part of the sandstone. However, we present a different viewpoint: 1) few tufts or tuff debris have been found in the high gamma sandstones of the Yanchang Formation; 2) high gamma (or high Th content) sandstones of Yanchang Formation are not related to either clay minerals or feldspar; 3) the heavy minerals in the sandstone reservoirs of the Yanchang Formation are dominated by zircon, which is characterized by abnormally high Th and U contents, up to 2,163 ppm and 1,362 ppm, respectively. This is sufficient to explain the high gamma anomaly. The conclusion is that the high gamma value of the Yanchang Formation sandstones might be caused by zircon with high Th and U contents in sandstones rather than from the tuff components.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 41210005 and 41776081)the National Oil and Gas Major Project of China (No. 2011ZX05007-001)the Applied Basic Research Program of Qingdao (No. 2016239)
文摘The spatial-temporal relationship between high-quality source rocks and reservoirs is a key factor when evaluating the formation,occurrence,and prospectivity of tight oil and gas reservoirs.In this study,we analyze the fundamental oil and gas accumulation processes occurring in the Songliao Basin,contrasting tight oil sand reservoirs in the south with tight gas sand reservoirs in the north.This is done using geochemical data,constant-rate and conventional mercury injection experiments,and fluid inclusion analyses.Our results demonstrate that as far as fluid mobility is concerned,the expulsion center coincides with the overpressure zone,and its boundary limits the occurrence of tight oil and gas accumulations.In addition,the lower permeability limit of high-quality reservoirs,controlled by pore-throat structures,is 0.1×10^-3μm^2 in the fourth member of the Lower Cretaceous Quantou Formation(K1q^4)in the southern Songliao Basin,and 0.05×10^-3μm^2 in the Lower Cretaceous Shahezi Formation(K1sh)in the northern Songliao Basin.Furthermore,the results indicate that the formation of tight oil and gas reservoirs requires the densification of reservoirs prior to the main phase of hydrocarbon expulsion from the source rocks.Reservoir“sweet spots”develop at the intersection of high-quality source rocks(with high pore pressure)and reservoirs(with high permeability).
基金Project(18GK28)supported by the Doctoral Scientific Research Starting Foundation for the Yulin University,ChinaProject(20106101110020)supported by the University Research Fund of Science and Technology Development Center of Ministry of Education,ChinaProject(BJ08133-3)supported by the Key Fund Project of Continental Dynamics National Key Laboratory of Northwest University,China
文摘The large scale development of high natural gamma sandstones has been discovered in the Chang 73 Submember of the Triassic Yanchang Formation in the Ordos Basin, China. High natural gamma sandstones consist of terrigenous detrital rocks with particle sizes ranging from silt to sand. They represent turbidite deposits characterized by high gamma ray values that are more than 180 American Petroleum Institute (API) units on a natural gamma ray log profile. For a long time, very high natural gamma sandstones had been identified as high-quality source rocks, such as oil shales, from conventional well log profiles, such as natural gamma ray well logs. Therefore, predicting the distribution of high natural gamma sandstones was studied. The sedimentary, lithological, and well log characteristics, as well as the genesis of the high radioactivity of high natural gamma sandstones were analyzed in the Chang 73 Submember. Thorium (Th), uranium (U) and other radioactive elements were found, carried by deep hydrothermal activity, and probably resulted in the formation of a relatively high radioactive zone in the cross-section, where high natural gamma sandstones usually develop in large quantities. This caused many turbidite sand bodies, which should have a continuous distribution in the cross-section, to appear to have a discontinuous distribution, when using conventional well log profiles, such as natural gamma ray well logs. From the above mentioned apparent discontinuous distribution of turbidite sand bodies in the cross-section, a continuous distribution can be predicted. It is obvious that the prediction of areas of continuous turbidite sand bodies in the cross-section usually corresponds with areas where high natural gamma sandstones are developed in large quantities. Exploration and development practice demonstrated that the developed method is fast and effective in predicting high natural gamma sandstones in the Chang 73 Submember.
基金Supported by the Research on Exploration and Development Technology and New Exploration Field of High Temperature and Pressure Gas Reservoir in Western South China Sea(CNOOC-KJ135ZDXM38ZJ02ZJ)National Natural Science Foundation of China(41972129)National Science and Technology Key Project(2016ZX05024-005,2016ZX05026-003-005)。
文摘The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.
基金supported by the National Science and Technology Major Subject(No.2008ZX05044 2-8-2)"Large scale oil and gas field and coal bed methane development"
文摘Recently, more attention has been paid on the high gamma sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China. These high gamma sandstones have logging characteristics different from conventional sandstones, which influences the identification of sandstone reservoirs. Zhang et al (2010) proposed that the high gamma sandstones of the Yanchang Formation might be the result of re-deposition of homochronous sedimentary tufts or previous tufts as a part of the sandstone. However, we present a different viewpoint: 1) few tufts or tuff debris have been found in the high gamma sandstones of the Yanchang Formation; 2) high gamma (or high Th content) sandstones of Yanchang Formation are not related to either clay minerals or feldspar; 3) the heavy minerals in the sandstone reservoirs of the Yanchang Formation are dominated by zircon, which is characterized by abnormally high Th and U contents, up to 2,163 ppm and 1,362 ppm, respectively. This is sufficient to explain the high gamma anomaly. The conclusion is that the high gamma value of the Yanchang Formation sandstones might be caused by zircon with high Th and U contents in sandstones rather than from the tuff components.