In this paper, we consider the Cauchy numbers and polynomials of order k and give some relation between Cauchy polynomials of order k and special polynomials by using generating functions and the Riordan matrix method...In this paper, we consider the Cauchy numbers and polynomials of order k and give some relation between Cauchy polynomials of order k and special polynomials by using generating functions and the Riordan matrix methods. In addition, we establish some new equalities and relations involving high-order Cauchy numbers and polynomials, high-order Daehee numbers and polynomials, the generalized Bell polynomials, the Bernoulli numbers and polynomials, high-order Changhee polynomials, high-order Changhee-Genocchi polynomials, the combinatorial numbers, Lah numbers and Stirling numbers, etc.展开更多
在研究依赖多期索赔次数的奖惩系统时,Centeno and Andrade通过等级拆分方法,使新奖惩系统具有一阶马氏性.然而,现有文献并没有给出规范的拆分等级方法.本文利用高阶马尔科夫链有关知识,给出了一种程序化的拆分等级法,并把它用于葡萄牙...在研究依赖多期索赔次数的奖惩系统时,Centeno and Andrade通过等级拆分方法,使新奖惩系统具有一阶马氏性.然而,现有文献并没有给出规范的拆分等级方法.本文利用高阶马尔科夫链有关知识,给出了一种程序化的拆分等级法,并把它用于葡萄牙的奖惩系统,得到了与Centeno and Andrade相同的结果,验证了新方法的合理性.展开更多
文摘In this paper, we consider the Cauchy numbers and polynomials of order k and give some relation between Cauchy polynomials of order k and special polynomials by using generating functions and the Riordan matrix methods. In addition, we establish some new equalities and relations involving high-order Cauchy numbers and polynomials, high-order Daehee numbers and polynomials, the generalized Bell polynomials, the Bernoulli numbers and polynomials, high-order Changhee polynomials, high-order Changhee-Genocchi polynomials, the combinatorial numbers, Lah numbers and Stirling numbers, etc.
文摘在研究依赖多期索赔次数的奖惩系统时,Centeno and Andrade通过等级拆分方法,使新奖惩系统具有一阶马氏性.然而,现有文献并没有给出规范的拆分等级方法.本文利用高阶马尔科夫链有关知识,给出了一种程序化的拆分等级法,并把它用于葡萄牙的奖惩系统,得到了与Centeno and Andrade相同的结果,验证了新方法的合理性.