To formulate fluids with flowback water,produced water directly to improve the utilization rate of recycling and reduce the adsorption damage of slick water to reservoirs,a high salt tolerance and low adsorption drag ...To formulate fluids with flowback water,produced water directly to improve the utilization rate of recycling and reduce the adsorption damage of slick water to reservoirs,a high salt tolerance and low adsorption drag reducer was designed and prepared by introducing polar cation fragments to enhance the non-covalent interactions between the chains.The drag reducer was characterized by IR and NMR.Friction resistance and viscosity tests were conducted to evaluate its salt resistance property.Static adsorption and dynamic adsorption retention tests were carried out to evaluate the damage of this reducer to shale reservoirs.The introduction of cation units into the molecular structure can weak the shielding effect of metal cations to some extent,so the drag reducer can keep a stable molecular structure and good resistant reducing performance under high salinity.The enhancement of non-covalent interaction between chains decreased the free polarity sites,further reduced the possibility of hydrogen bonding between drag reducer molecules and shale.In high salinity condition,both the adsorption capacity of the drag reducer on the shale surface and the average damage rate to the core permeability are low.Compared with the conventional salt-tolerant system,the overall liquid cost was reduced by 17%and the production per well increased by 44%.The application of this slick water system has achieved remarkable results.展开更多
N-2000 is an admixture for concrete, with a low slump loss, high range water-reducing ratio and long-time retarding. The N-2000 is made up of naphthalene-sulfonic-maldehyde polycondensation (NSMP) and ATMP. Its charac...N-2000 is an admixture for concrete, with a low slump loss, high range water-reducing ratio and long-time retarding. The N-2000 is made up of naphthalene-sulfonic-maldehyde polycondensation (NSMP) and ATMP. Its characteristic results from the synergistic effects of NSMP and ATMP. The results show that when 0.7%-1.2% of N-2000 is added to concrete (by mass of cement), the water reducing ratio is up to 20%-30%, and the slump of fresh concrete can be retained for 2 hours without significant loss. N-2000 can not only improve the workability of fresh concrete but also increase the strength of the hardened concrete, especially early strength. It is also proved to have a good compatibility with various cements.展开更多
Facing the contradiction of water scarcity and water wastage in most cities of China, this study aims at probing into the factors influencing water-use efficiency and assessing water-saving potential by adopting press...Facing the contradiction of water scarcity and water wastage in most cities of China, this study aims at probing into the factors influencing water-use efficiency and assessing water-saving potential by adopting pressure control measures based on field survey conducted in 23 high-rise buildings in Suqian, China and laboratory tests. Results showed that per capita water consumption (PCWC) exceeding water consumption norms is common in these buildings. The hourly water consumption variation law is quite different among different types of buildings. These differences should be considered in designing building water supply systems to lower water and energy consumption. On the basis of correlation analysis, the order of factors influencing the PCWC follows average tap water pressure, percapita building area, and building age, suggesting pressure management in high-rise buildings is a key water-saving measure. Field tests of outflow characteristics under different water pressures indicated that over-pressure outflow (OPO) is a common cause of water wastage in buildings, however, no branch pipe pressure control measures were found in all the surveyed buildings. Laboratory tests showed that branch pipe pressure-reducing measures can lower water consumption and improve the comfortability of use as well. Therefore, in addition to applying high efficiency water-saving devices, we strongly recommend that branch pipe pressure-reducing measures should be strictly implemented in designing new building water supply systems and reconstruction of existing old building water supply systems, thereby, promoting water, energy saving and development of green building.展开更多
Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polyca...Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polycarboxlic series high range water reduce agent and sodium sulfate hardening accelerating agent. Two kinds of curing condition, namely steam curing condition and standard curing condition, are adopted. The result shows that HPC, added with polycarboxlic series of high performance water reducer, has high workability and strength, while sodium sulfate accelerating agent causes poor workability and low strength. Thus for vapor-cured HPC and its formulations, naphthalene series high range water reducing agent with less sodium sulfate should be given pri- ority. Therefore, the differences of curing conditions should be considered when selecting HPC admixtures.展开更多
基金Supported by the China National Science and Technology Major Project(2017ZX05023003)National Science Fund for Distinguished Young Scholars(51525404)
文摘To formulate fluids with flowback water,produced water directly to improve the utilization rate of recycling and reduce the adsorption damage of slick water to reservoirs,a high salt tolerance and low adsorption drag reducer was designed and prepared by introducing polar cation fragments to enhance the non-covalent interactions between the chains.The drag reducer was characterized by IR and NMR.Friction resistance and viscosity tests were conducted to evaluate its salt resistance property.Static adsorption and dynamic adsorption retention tests were carried out to evaluate the damage of this reducer to shale reservoirs.The introduction of cation units into the molecular structure can weak the shielding effect of metal cations to some extent,so the drag reducer can keep a stable molecular structure and good resistant reducing performance under high salinity.The enhancement of non-covalent interaction between chains decreased the free polarity sites,further reduced the possibility of hydrogen bonding between drag reducer molecules and shale.In high salinity condition,both the adsorption capacity of the drag reducer on the shale surface and the average damage rate to the core permeability are low.Compared with the conventional salt-tolerant system,the overall liquid cost was reduced by 17%and the production per well increased by 44%.The application of this slick water system has achieved remarkable results.
基金Key Science and Technology Development Fund Project of Hubei Province.China(No.941PO106).
文摘N-2000 is an admixture for concrete, with a low slump loss, high range water-reducing ratio and long-time retarding. The N-2000 is made up of naphthalene-sulfonic-maldehyde polycondensation (NSMP) and ATMP. Its characteristic results from the synergistic effects of NSMP and ATMP. The results show that when 0.7%-1.2% of N-2000 is added to concrete (by mass of cement), the water reducing ratio is up to 20%-30%, and the slump of fresh concrete can be retained for 2 hours without significant loss. N-2000 can not only improve the workability of fresh concrete but also increase the strength of the hardened concrete, especially early strength. It is also proved to have a good compatibility with various cements.
文摘Facing the contradiction of water scarcity and water wastage in most cities of China, this study aims at probing into the factors influencing water-use efficiency and assessing water-saving potential by adopting pressure control measures based on field survey conducted in 23 high-rise buildings in Suqian, China and laboratory tests. Results showed that per capita water consumption (PCWC) exceeding water consumption norms is common in these buildings. The hourly water consumption variation law is quite different among different types of buildings. These differences should be considered in designing building water supply systems to lower water and energy consumption. On the basis of correlation analysis, the order of factors influencing the PCWC follows average tap water pressure, percapita building area, and building age, suggesting pressure management in high-rise buildings is a key water-saving measure. Field tests of outflow characteristics under different water pressures indicated that over-pressure outflow (OPO) is a common cause of water wastage in buildings, however, no branch pipe pressure control measures were found in all the surveyed buildings. Laboratory tests showed that branch pipe pressure-reducing measures can lower water consumption and improve the comfortability of use as well. Therefore, in addition to applying high efficiency water-saving devices, we strongly recommend that branch pipe pressure-reducing measures should be strictly implemented in designing new building water supply systems and reconstruction of existing old building water supply systems, thereby, promoting water, energy saving and development of green building.
基金Supported by the National Basic Research Programe of China("973"Program)(2009CB623203)the Construction Department of Zhejiang Province Foundation(1006)+1 种基金the Education Department of Zhejiang Province Foundation(Y200909029)the Doctoral Innovation Foundation of Nanjing University of Aeronautics andAstronautics(BCXJ07-04)~~
文摘Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polycarboxlic series high range water reduce agent and sodium sulfate hardening accelerating agent. Two kinds of curing condition, namely steam curing condition and standard curing condition, are adopted. The result shows that HPC, added with polycarboxlic series of high performance water reducer, has high workability and strength, while sodium sulfate accelerating agent causes poor workability and low strength. Thus for vapor-cured HPC and its formulations, naphthalene series high range water reducing agent with less sodium sulfate should be given pri- ority. Therefore, the differences of curing conditions should be considered when selecting HPC admixtures.