This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has be...This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has been recently extended by the authors to account for coupled convective econductive heat flow and transport, and to enable full hydro-thermal fluidesolid coupled modeling.The application of the work is on enhanced geothermal systems(EGSs), and hydraulic fracturing of hot dry rock(HDR) is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convectiveeconductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.展开更多
To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and ...To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program.展开更多
To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displ...To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displacement of the rock mass,was designed according to the hydrogeological condition of Heimifeng pumped storage power station.With the assumption of radial water flow pattern in the rock mass during the HPPT,a theoretical formula was presented to estimate the coefficient of permeability of the rock mass using water pressures in injection and measuring boreholes.The variation in permeability of the rock mass with the injected water pressure was studied according to the suggested formula.By fitting the relationship between the coefficient of permeability and the injected water pressure,a mathematical expression was obtained and used in the numerical simulations.For a better understanding of the relationship between the pore water pressure and the displacement of the rock mass,a 3D numerical method based on a coupled hydro-mechanical theory was employed to simulate the response of the rock mass during the test.By comparison of the calculated and measured data of pore water pressure and displacement,the deformation behaviors of the rock mass were analyzed.It is shown that the variation of displacement in the fractured rock mass is caused by water flow passing through it under high water pressure,and the rock deformation during the test could be calculated by using the coupled hydro-mechanical model.展开更多
To effectively solve the problem of lost circulation and well kick frequently occurring during the drilling of abnormally high temperature and pressure fractured-vuggy reservoirs in the Tazhong block, a rigid particle...To effectively solve the problem of lost circulation and well kick frequently occurring during the drilling of abnormally high temperature and pressure fractured-vuggy reservoirs in the Tazhong block, a rigid particle material, GZD, with high temperature tolerance, high rigidity(> 8 MPa) and low abrasiveness has been selected based on geological characteristics of the theft zones in the reservoirs. Through static pressure sealing experiments, its dosage when used alone and when used in combination with lignin fiber, elastic material SQD-98 and calcium carbonate were optimized, and the formula of a new type(SXM-I) of compound lost circulation material with high temperature tolerance and high strength was formed. Its performance was evaluated by compatibility test, static sealing experiment and sand bed plugging experiment. The test results show that it has good compatibility with drilling fluid used commonly and is able to plug fractures and vugs, the sealed fractures are able to withstand the static pressure of more than 9 MPa and the cumulative leakage is 13.4 mL. The mud filtrate invasion depth is only 2.5 cm in 30 min when the sand bed is made of particles with sizes between 10 mesh and 20 mesh. Overall, with good sealing property and high temperature and high pressure tolerance, the lost circulation material provides strong technical support for the safety drilling in the block.展开更多
基金Financial support provided by the U.S. Department of Energy under DOE Grant No. DE-FE0002760
文摘This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has been recently extended by the authors to account for coupled convective econductive heat flow and transport, and to enable full hydro-thermal fluidesolid coupled modeling.The application of the work is on enhanced geothermal systems(EGSs), and hydraulic fracturing of hot dry rock(HDR) is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convectiveeconductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.
基金Supported by the National Natural Science Foundation of China(41872124,42130803)Sinopec Key Science and Technology Project(P20046).
文摘To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program.
文摘To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displacement of the rock mass,was designed according to the hydrogeological condition of Heimifeng pumped storage power station.With the assumption of radial water flow pattern in the rock mass during the HPPT,a theoretical formula was presented to estimate the coefficient of permeability of the rock mass using water pressures in injection and measuring boreholes.The variation in permeability of the rock mass with the injected water pressure was studied according to the suggested formula.By fitting the relationship between the coefficient of permeability and the injected water pressure,a mathematical expression was obtained and used in the numerical simulations.For a better understanding of the relationship between the pore water pressure and the displacement of the rock mass,a 3D numerical method based on a coupled hydro-mechanical theory was employed to simulate the response of the rock mass during the test.By comparison of the calculated and measured data of pore water pressure and displacement,the deformation behaviors of the rock mass were analyzed.It is shown that the variation of displacement in the fractured rock mass is caused by water flow passing through it under high water pressure,and the rock deformation during the test could be calculated by using the coupled hydro-mechanical model.
基金Supported by the China National Science and Technology Major Project(2011ZX05042-002-001)
文摘To effectively solve the problem of lost circulation and well kick frequently occurring during the drilling of abnormally high temperature and pressure fractured-vuggy reservoirs in the Tazhong block, a rigid particle material, GZD, with high temperature tolerance, high rigidity(> 8 MPa) and low abrasiveness has been selected based on geological characteristics of the theft zones in the reservoirs. Through static pressure sealing experiments, its dosage when used alone and when used in combination with lignin fiber, elastic material SQD-98 and calcium carbonate were optimized, and the formula of a new type(SXM-I) of compound lost circulation material with high temperature tolerance and high strength was formed. Its performance was evaluated by compatibility test, static sealing experiment and sand bed plugging experiment. The test results show that it has good compatibility with drilling fluid used commonly and is able to plug fractures and vugs, the sealed fractures are able to withstand the static pressure of more than 9 MPa and the cumulative leakage is 13.4 mL. The mud filtrate invasion depth is only 2.5 cm in 30 min when the sand bed is made of particles with sizes between 10 mesh and 20 mesh. Overall, with good sealing property and high temperature and high pressure tolerance, the lost circulation material provides strong technical support for the safety drilling in the block.