Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration...Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration is related to the steady, safety and economy of micro-grid.In order to improve the absorptive capacity of micro-grid on maximizing the use of distributed PV power in micro-grid, and improve the power quality, an optimal energy storage configuration strategy is proposed, which takes many factors into account, such as the topology of micro-grid, the change of irradiance, the load fluctuation and the cable. The strategy can optimize the energy storage allocation model to minimize the storage power capacity and optimize the node configuration.The key electrical nodes are identified by using the sensitivity coefficient of the voltage, and then the model is optimized to simplify calculation. Finally, an example of the European low-voltage micro-grid and a micro-grid system in the laboratory is used to verify the effectiveness of the proposed method.The results show that the proposed method can optimize the allocation of capacity and the node of the energy storage system.展开更多
This paper presents a grid connected photovoltaic system (PV) with a proposed high voltage conversion ratio DC-DC converter which steps up the variable low input voltages of photovoltaic module to the required DC link...This paper presents a grid connected photovoltaic system (PV) with a proposed high voltage conversion ratio DC-DC converter which steps up the variable low input voltages of photovoltaic module to the required DC link voltage. This voltage is applied to an H-bridge inverter which converts DC voltage into AC voltage and a low pass filter is used to filter the output. By adjusting the duty ratio of switches in DC-DC converter, the magnitude of inverter’s output voltage is controlled. The frequency and phase synchronization are ensured by a feedback signal taken from the grid. In this way, inverter is synchronized and connected with the grid to meet the energy demand. The PV system has been designed and simulated.展开更多
基金Supported by the National Program of International S&T Cooperation(No.2014DFE60020)Natural Science Foundation of Zhejiang Province(No.LY15E070004)
文摘Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration is related to the steady, safety and economy of micro-grid.In order to improve the absorptive capacity of micro-grid on maximizing the use of distributed PV power in micro-grid, and improve the power quality, an optimal energy storage configuration strategy is proposed, which takes many factors into account, such as the topology of micro-grid, the change of irradiance, the load fluctuation and the cable. The strategy can optimize the energy storage allocation model to minimize the storage power capacity and optimize the node configuration.The key electrical nodes are identified by using the sensitivity coefficient of the voltage, and then the model is optimized to simplify calculation. Finally, an example of the European low-voltage micro-grid and a micro-grid system in the laboratory is used to verify the effectiveness of the proposed method.The results show that the proposed method can optimize the allocation of capacity and the node of the energy storage system.
文摘This paper presents a grid connected photovoltaic system (PV) with a proposed high voltage conversion ratio DC-DC converter which steps up the variable low input voltages of photovoltaic module to the required DC link voltage. This voltage is applied to an H-bridge inverter which converts DC voltage into AC voltage and a low pass filter is used to filter the output. By adjusting the duty ratio of switches in DC-DC converter, the magnitude of inverter’s output voltage is controlled. The frequency and phase synchronization are ensured by a feedback signal taken from the grid. In this way, inverter is synchronized and connected with the grid to meet the energy demand. The PV system has been designed and simulated.