High voltage power modules are used in numerous applications to build high power converters. Technically, these modules are made of different materials and among them, dielectric materials are organic and inorganic. O...High voltage power modules are used in numerous applications to build high power converters. Technically, these modules are made of different materials and among them, dielectric materials are organic and inorganic. Organic insulators (gels) are used to avoid corona discharges in the vicinity of connecting wires and high voltage dies (diodes and transistors) and to protect them from moisture and contaminants. Inorganic insulators (ceramic substrates) are used to insulate the high voltage which dies from the grounded elements and to transfer heat to the heat sink. Despite being used since the late 90s, there is a lack of fundamental knowledge about the electrical properties of these substrates. Consequently, manufacturers tend to assure the reliability by over sizing them. As there are no clear rules for how to do that, failures occur, leading to the converter shutdown. The aim of this study is to bring new information about the understanding of the dielectric strength of ceramic materials used in these modules. We have focused our work on the correlation between the mechanical and the dielectric properties of ceramics by using relevant experiments. We provide new information about the impact of existing cracks on the ceramic dielectric failure, according to the electromechanical breakdown model. Our conclusions bring crucial information about the precautions to be taken during manufacturing and implementation of these substrates in power modules to reduce the likelihood of the particular causes of failure.展开更多
Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality...Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2-str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.展开更多
The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing throug...The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing through spatial filters with different magnifications is analyzed by numerical simulation, according to the actual structure of the high power laser system. The results show that the spatial modulation period of low-frequency noise getting through the pinhole will be proportional to the magnification of the spatial filter. When the magnification is less than 1, the safe low-frequency noise will be extruded into the high-frequency region, which is the fast increasing part, and finally develops into the most dangerous part which can damage the optical devices. The conclusion of this research improves the relay imaging theory of a spatial filter and provides an important theoretical basis for a general design of high power laser systems.展开更多
文摘High voltage power modules are used in numerous applications to build high power converters. Technically, these modules are made of different materials and among them, dielectric materials are organic and inorganic. Organic insulators (gels) are used to avoid corona discharges in the vicinity of connecting wires and high voltage dies (diodes and transistors) and to protect them from moisture and contaminants. Inorganic insulators (ceramic substrates) are used to insulate the high voltage which dies from the grounded elements and to transfer heat to the heat sink. Despite being used since the late 90s, there is a lack of fundamental knowledge about the electrical properties of these substrates. Consequently, manufacturers tend to assure the reliability by over sizing them. As there are no clear rules for how to do that, failures occur, leading to the converter shutdown. The aim of this study is to bring new information about the understanding of the dielectric strength of ceramic materials used in these modules. We have focused our work on the correlation between the mechanical and the dielectric properties of ceramics by using relevant experiments. We provide new information about the impact of existing cracks on the ceramic dielectric failure, according to the electromechanical breakdown model. Our conclusions bring crucial information about the precautions to be taken during manufacturing and implementation of these substrates in power modules to reduce the likelihood of the particular causes of failure.
文摘Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2-str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.
文摘The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing through spatial filters with different magnifications is analyzed by numerical simulation, according to the actual structure of the high power laser system. The results show that the spatial modulation period of low-frequency noise getting through the pinhole will be proportional to the magnification of the spatial filter. When the magnification is less than 1, the safe low-frequency noise will be extruded into the high-frequency region, which is the fast increasing part, and finally develops into the most dangerous part which can damage the optical devices. The conclusion of this research improves the relay imaging theory of a spatial filter and provides an important theoretical basis for a general design of high power laser systems.