High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-...High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-frequency signal,seeking for new time-transfer techniques betw een distant clocks w ith much further improved accuracy attracts attentions w orld-w idely. The time-transfer technique based on optical pulses has the highest precision presently,and the further improvement in the accuracy is heavily dependent on the time-domain properties of the pulse as w ell as the sensitivity of the applied measurement on the exchanged pulse. The application of optical frequency comb in time transfer for a precision up to femtosecond level are currently the focus of much interest,and has recently achieved many breakthroughs. Further investigations show that,utilizing quantum techniques,i.e. quantum measurement technique and quantum optical pulse source,can lead to a new limit on the measured timing information. Furthermore,it can be immune from atmospheric parameters,such as pressure,temperature,humidity and so on.Such quantum improvements on time-transfer have a bright prospect in the future applications requiring extremely high-accuracy timing and ranging. The potential achievements w ill form a technical basis for the future realization of sub-femtosecond time transfer system.展开更多
车联网(Vehicle to Everything,V2X)通信被认为是未来无线通信网络最重要的应用之一。然而,车辆在高速移动时引起的高多普勒频移会严重恶化V2X通信链路的性能。正交时频空(Orthogonal Time Frequency Space,OTFS)调制技术可以将时间和...车联网(Vehicle to Everything,V2X)通信被认为是未来无线通信网络最重要的应用之一。然而,车辆在高速移动时引起的高多普勒频移会严重恶化V2X通信链路的性能。正交时频空(Orthogonal Time Frequency Space,OTFS)调制技术可以将时间和频率选择性信道转换为时延-多普勒(Delay-Doppler,DD)域的非选择性信道,从而显著提高无线通信系统在高移动性场景下的性能,在V2X通信中具有重要的应用价值。但OTFS调制技术极大地增加了系统接收端的复杂度,研究低复杂度信号检测算法成为了新一代无线通信系统采用OTFS调制的关键问题之一。为此,综述了面向车联网V2X通信的OTFS信号检测算法。首先介绍了OTFS系统模型,然后概述了现有的低复杂度OTFS信号检测算法,并将其分为线性检测算法、消息传递(Message Passing,MP)检测算法及其改进算法、基于神经网络的检测算法3类,最后探讨了V2X通信中OTFS信号检测目前所面临的技术挑战与未来的发展趋势。展开更多
针对正交时频空(Orthogonal Time Frequency Space,OTFS)通信系统信号检测复杂度高的问题,提出一种改进的高斯近似消息传递(Gaussian Approximate Message Passing,GA-MP)检测算法。依据最大后验概率检测准则,对发送信号及隐变量进行逐...针对正交时频空(Orthogonal Time Frequency Space,OTFS)通信系统信号检测复杂度高的问题,提出一种改进的高斯近似消息传递(Gaussian Approximate Message Passing,GA-MP)检测算法。依据最大后验概率检测准则,对发送信号及隐变量进行逐符号高斯近似,基于置信传播算法与联合因子图进行消息传递,用边缘后验概率替代GA-MP中的外部信息以减少运算量,结合阻尼因子提升收敛速度,同时引入概率阈值减少后续更新的节点数,从而使运算复杂度得到有效降低。实验结果表明,改进后的GA-MP算法在保证误码率性能的前提下具有更低的复杂度。展开更多
文摘High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-frequency signal,seeking for new time-transfer techniques betw een distant clocks w ith much further improved accuracy attracts attentions w orld-w idely. The time-transfer technique based on optical pulses has the highest precision presently,and the further improvement in the accuracy is heavily dependent on the time-domain properties of the pulse as w ell as the sensitivity of the applied measurement on the exchanged pulse. The application of optical frequency comb in time transfer for a precision up to femtosecond level are currently the focus of much interest,and has recently achieved many breakthroughs. Further investigations show that,utilizing quantum techniques,i.e. quantum measurement technique and quantum optical pulse source,can lead to a new limit on the measured timing information. Furthermore,it can be immune from atmospheric parameters,such as pressure,temperature,humidity and so on.Such quantum improvements on time-transfer have a bright prospect in the future applications requiring extremely high-accuracy timing and ranging. The potential achievements w ill form a technical basis for the future realization of sub-femtosecond time transfer system.
文摘车联网(Vehicle to Everything,V2X)通信被认为是未来无线通信网络最重要的应用之一。然而,车辆在高速移动时引起的高多普勒频移会严重恶化V2X通信链路的性能。正交时频空(Orthogonal Time Frequency Space,OTFS)调制技术可以将时间和频率选择性信道转换为时延-多普勒(Delay-Doppler,DD)域的非选择性信道,从而显著提高无线通信系统在高移动性场景下的性能,在V2X通信中具有重要的应用价值。但OTFS调制技术极大地增加了系统接收端的复杂度,研究低复杂度信号检测算法成为了新一代无线通信系统采用OTFS调制的关键问题之一。为此,综述了面向车联网V2X通信的OTFS信号检测算法。首先介绍了OTFS系统模型,然后概述了现有的低复杂度OTFS信号检测算法,并将其分为线性检测算法、消息传递(Message Passing,MP)检测算法及其改进算法、基于神经网络的检测算法3类,最后探讨了V2X通信中OTFS信号检测目前所面临的技术挑战与未来的发展趋势。
文摘针对正交时频空(Orthogonal Time Frequency Space,OTFS)通信系统信号检测复杂度高的问题,提出一种改进的高斯近似消息传递(Gaussian Approximate Message Passing,GA-MP)检测算法。依据最大后验概率检测准则,对发送信号及隐变量进行逐符号高斯近似,基于置信传播算法与联合因子图进行消息传递,用边缘后验概率替代GA-MP中的外部信息以减少运算量,结合阻尼因子提升收敛速度,同时引入概率阈值减少后续更新的节点数,从而使运算复杂度得到有效降低。实验结果表明,改进后的GA-MP算法在保证误码率性能的前提下具有更低的复杂度。