At the beginning of 1980’s, the power equipment manufacturing industry in China introduced patent technology on designing and manufacturing the turbine, generator, boiler and their auxiliaries from USA owing to the p...At the beginning of 1980’s, the power equipment manufacturing industry in China introduced patent technology on designing and manufacturing the turbine, generator, boiler and their auxiliaries from USA owing to the policy of opening and reformation. In the meantime, our works also imported the patent technology on designing展开更多
Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating ...Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating the gas to very high speed around 7 km/s. Various structures of the arc generator and gas expansion nozzle were examined. Results show that bypass exhausting of the boundary layer before it enters the nozzle divergent section can greatly increase flow speed of the jet, thus it might be possible to use nitrogen as a working gas in high speed gas dynamic test facilities.展开更多
The high speed fluid jet for directly or indirectly breaking rock is one of the most effective ways to improve the deep penetration rate. In order to maximize the efficiency of energy use, the flow characteristics of ...The high speed fluid jet for directly or indirectly breaking rock is one of the most effective ways to improve the deep penetration rate. In order to maximize the efficiency of energy use, the flow characteristics of different combinations of high pressure jet nozzles are analyzed through numerical simulations. According to the velocity vectors at the bottom and the bottom hole pressure diagram, the effects of the high pressure nozzle combinations on the flow structure and the penetration rate are analyzed. It is shown that the combination of three vertical edge nozzles is very efficient, but inefficient in cleaning the bottom hole and eroding the wall. The jet velocity is 400 m/s and the radius is 5 mm, with a center nozzle added, the problem can be solved, but the high-pressure fluid displacement would increase. The center nozzle's jet velocity is 200 m/s and the radius is 8 ram, the combination of two vertical edge nozzles and a center tilt nozzle or that of a vertical edge nozzle and a center tilt nozzle would provide a flow structure favorable for drilling. The angle of inclination is 10°. To take advantage of high pressure jet energy to improve the efficiency of drilling, it is important to select a suitable nozzle combination according real conditions.展开更多
The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs an...The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs and improved durability.These goals are sought by 25%reduction in vane count number and lower number of airfoils per segment.Design challenges such as higher airfoil loading,associate aerodynamic losses and higher thermal loads are discussed.In order to maximize coolant flow reduction and avoid higher aerodynamic losses,airfoil Mach distribution is carefully controlled.There has been an effort to limit design changes so that the proven design features of the original vane are used as much as possible.Accordingly,the same cooling concept is used with minor modifications of the internal structures in order to achieve desired coolant flow and internal heat transfer distribution.Platforms of the new design are quite similar to the original one except for cooling holes and application of thermal barrier coating(TBC).Detailed aerodynamics/heat transfer simulations reveals that the reduced trailing edge(T.E.)blockage and skin friction dominated the negative effect of increased secondary losses.As a result the reduced design performs acceptable in terms of total pressure loss and improving stage efficiency for a wide range of varying pressure ratio.Moreover,more than 20%cooling mass flow can be saved;while maximum and average metal temperatures as well as cross sectional temperature gradients have not been changed much.展开更多
In this paper, the effects of polymer additives and nozzle shape on the proper- ties of high pressure water jet discharging into the air are investigated by theory and experiments. Criteria of judging the jet quality ...In this paper, the effects of polymer additives and nozzle shape on the proper- ties of high pressure water jet discharging into the air are investigated by theory and experiments. Criteria of judging the jet quality are put forward. And, a method that can be used in analysing the fluid flow within the nozzle is developed. Then, the calculated results are compared with the experiments that we carried out; it is shown that the degree of agreement between the two is good. At last, the mechanism to improve on the jet quality with polymer additives is discussed.展开更多
A new heating method is proposed to increase the cell temperature of the 6-8 type multi-anvil apparatus without reducing the volume of the sample chamber. The double-layer heater assembly (DHA) has two layers of heate...A new heating method is proposed to increase the cell temperature of the 6-8 type multi-anvil apparatus without reducing the volume of the sample chamber. The double-layer heater assembly (DHA) has two layers of heaters connected in parallel. The temperature of the cell was able to reach 2500 ℃ by using 0.025 mm rhenium foils, and the temperature limit was increased by 25% compared with that of the traditional single-layer assembly. The power-temperature relationships for these two assemblies with different sizes were calibrated by using W/Re thermocouple at 20 GPa. When the volume of samples was the same, the DHA not only attained higher temperature, but also kept the holding time longer, compared to the traditional assembly. The results of more than ten experiments showed that the new 10/4 DHA with a relatively large sample size (2 mm in diameter and 4 mm in height) can work stably with the center temperature of the sample cavity exceeding 2300 ℃ under the pressure of 20 GPa.展开更多
文摘At the beginning of 1980’s, the power equipment manufacturing industry in China introduced patent technology on designing and manufacturing the turbine, generator, boiler and their auxiliaries from USA owing to the policy of opening and reformation. In the meantime, our works also imported the patent technology on designing
基金supported by the National Natural Science Foundation of China(Nos.11575273 and 11475239)
文摘Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating the gas to very high speed around 7 km/s. Various structures of the arc generator and gas expansion nozzle were examined. Results show that bypass exhausting of the boundary layer before it enters the nozzle divergent section can greatly increase flow speed of the jet, thus it might be possible to use nitrogen as a working gas in high speed gas dynamic test facilities.
文摘The high speed fluid jet for directly or indirectly breaking rock is one of the most effective ways to improve the deep penetration rate. In order to maximize the efficiency of energy use, the flow characteristics of different combinations of high pressure jet nozzles are analyzed through numerical simulations. According to the velocity vectors at the bottom and the bottom hole pressure diagram, the effects of the high pressure nozzle combinations on the flow structure and the penetration rate are analyzed. It is shown that the combination of three vertical edge nozzles is very efficient, but inefficient in cleaning the bottom hole and eroding the wall. The jet velocity is 400 m/s and the radius is 5 mm, with a center nozzle added, the problem can be solved, but the high-pressure fluid displacement would increase. The center nozzle's jet velocity is 200 m/s and the radius is 8 ram, the combination of two vertical edge nozzles and a center tilt nozzle or that of a vertical edge nozzle and a center tilt nozzle would provide a flow structure favorable for drilling. The angle of inclination is 10°. To take advantage of high pressure jet energy to improve the efficiency of drilling, it is important to select a suitable nozzle combination according real conditions.
文摘The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs and improved durability.These goals are sought by 25%reduction in vane count number and lower number of airfoils per segment.Design challenges such as higher airfoil loading,associate aerodynamic losses and higher thermal loads are discussed.In order to maximize coolant flow reduction and avoid higher aerodynamic losses,airfoil Mach distribution is carefully controlled.There has been an effort to limit design changes so that the proven design features of the original vane are used as much as possible.Accordingly,the same cooling concept is used with minor modifications of the internal structures in order to achieve desired coolant flow and internal heat transfer distribution.Platforms of the new design are quite similar to the original one except for cooling holes and application of thermal barrier coating(TBC).Detailed aerodynamics/heat transfer simulations reveals that the reduced trailing edge(T.E.)blockage and skin friction dominated the negative effect of increased secondary losses.As a result the reduced design performs acceptable in terms of total pressure loss and improving stage efficiency for a wide range of varying pressure ratio.Moreover,more than 20%cooling mass flow can be saved;while maximum and average metal temperatures as well as cross sectional temperature gradients have not been changed much.
文摘In this paper, the effects of polymer additives and nozzle shape on the proper- ties of high pressure water jet discharging into the air are investigated by theory and experiments. Criteria of judging the jet quality are put forward. And, a method that can be used in analysing the fluid flow within the nozzle is developed. Then, the calculated results are compared with the experiments that we carried out; it is shown that the degree of agreement between the two is good. At last, the mechanism to improve on the jet quality with polymer additives is discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51872189)the Fundamental Research Funds for the Central Universities, China (Grant No. 2018SCUH0022).
文摘A new heating method is proposed to increase the cell temperature of the 6-8 type multi-anvil apparatus without reducing the volume of the sample chamber. The double-layer heater assembly (DHA) has two layers of heaters connected in parallel. The temperature of the cell was able to reach 2500 ℃ by using 0.025 mm rhenium foils, and the temperature limit was increased by 25% compared with that of the traditional single-layer assembly. The power-temperature relationships for these two assemblies with different sizes were calibrated by using W/Re thermocouple at 20 GPa. When the volume of samples was the same, the DHA not only attained higher temperature, but also kept the holding time longer, compared to the traditional assembly. The results of more than ten experiments showed that the new 10/4 DHA with a relatively large sample size (2 mm in diameter and 4 mm in height) can work stably with the center temperature of the sample cavity exceeding 2300 ℃ under the pressure of 20 GPa.