Research on the melting phenomenon is the most challenging work in the high pressure/temperature field. Until now,large discrepancies still exist in the melting curve of iron, the most interesting and extensively stud...Research on the melting phenomenon is the most challenging work in the high pressure/temperature field. Until now,large discrepancies still exist in the melting curve of iron, the most interesting and extensively studied element in geoscience research. Here we present a summary about techniques detecting melting in the laser heating diamond anvil cell.展开更多
Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculat...Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculated using a novel thermodynamical method.Thermal conductivity of fee(γ)-Fe increases up to a pressure of about46 GPa.We find thermal conductivity values in the range of 70-80 Wm-1K-1(with an uncertainty of 40%),almost constant with pressure,in the hcp(e)phase of Fe.We attribute the pressure independent k above 46 GPa to the strong electronic correlation effects driven by the electronic topological transition(ETT).We predict a value of thermal conductivity ofε-Fe of about 40±16 Wm-1K-1 at the outer core of Earth.展开更多
Laser-heated diamond-anvil cell (LHDAC) is emerging as the most suitable, economical and versatile tool for the measurement of a large spectrum of physical properties of materials under extreme pressure and temperatur...Laser-heated diamond-anvil cell (LHDAC) is emerging as the most suitable, economical and versatile tool for the measurement of a large spectrum of physical properties of materials under extreme pressure and temperature conditions. In this review, the recent developments in the instrumentation, pressure and temperature measurement techniques, results of experimental investigations from the literature were discussed. Also, the future scope of the technique in various avenues of science was explored.展开更多
The homogenization of silicate melt inclusions (SMIs),small droplets of silicate melt trapped in magmatic minerals,is an important component of petrogenetic and magmatic research.Conventional homogenization experime...The homogenization of silicate melt inclusions (SMIs),small droplets of silicate melt trapped in magmatic minerals,is an important component of petrogenetic and magmatic research.Conventional homogenization experiments on SMIs use microscope-mounted heating stages capable of producing high temperatures at 1 atm and cold-seal high-pressure vessels.Heating stages are generally used for SMIs with low internal pressures and allow in situ observations of the homogenization processes.In contrast,cold-seal high-pressure vessels are generally used to heat SMIs that have high internal pressures,although the homogenized SMIs can only be observed after quenching in this approach.Here we outline an alternative approach that uses a hydrothermal diamond anvil cell (HDAC) apparatus to homogenize SMIs.This is the only current method wherein phase changes in high-internal-pressure SMIs can be observed in situ during homogenization experiments,which represents an advantage over other conventional methods.Using an HDAC apparatus prevents high-internal-pressure SMIs from decrepitating during heating by elevating their external pressure,in addition to allowing in situ observations of SMIs.The type-V HDAC that is currently being used has a shorter distance between the sample chamber and the observation window than earlier types,potentially enabling continuous observation of the processes involved in heating and SMI homogenization through an objective lens with a long working distance.Homogenization experiments using HDAC require that a number of steps,including HDAC preparation,sample preparation,sample loading,preheating,and formal heating,be carefully followed.Homogenization experiments on SMIs within granite samples from the Jiajika pegmatite deposit (Sichuan,China) are best performed using an HDAC-based approach,because the elevated proper external pressure of these SMIs,combined with a short heating duration,helps to suppress material leakage and any reactions within the SMIs,in addition to allowing in situ observations during homogenization experiments.Furthermore,using the HDAC approach has other benefits:heating rates can be precisely controlled,wafer oxidization can be prevented,and samples can be subjected to in situ microbeam analysis.In summary,homogenization using HDAC provides more reliable results than those obtained using conventional heating equipment.Future developments will include improvements to the quenching method and temperature controls for the HDAC apparatus,thereby improving the utility of this approach for SMI homogenization experiments.展开更多
This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for ...This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, timeresolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF(Beijing Synchrotron Radiation Facility) and some results are also presented.展开更多
The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for unders...The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for understanding deep mantle processes. Such high P–T experiments are commonly conducted in a laser-heated diamond anvil cell, producing a multiphase assemblage consisting of 100 nm to submicron crystallite grains. The structures of these lower mantle phases often cannot be preserved upon pressure quenching;thus, in situ characterization is needed. The X-ray diffraction (XRD) pattern of such a multiphase assemblage usually displays a mixture of diffraction spots and rings as a result of the coarse grain size relative to the small X-ray beam size (3–5 lm) available at the synchrotron facilities. Severe peak overlapping from multiple phases renders the powder XRD method inadequate for indexing new phases and minor phases. Consequently, structure determination of new phases in a high P–T multiphase assemblage has been extremely difficult using conventional XRD techniques. Our recent development of multigrain XRD in high-pressure research has enabled the indexation of hundreds of individual crystallite grains simultaneously through the determination of crystallographic orientations for these individual grains. Once indexation is achieved, each grain can be treated as a single crystal. The combined crystallographic information from individual grains can be used to determine the crystal structures of new phases and minor phases simultaneously in a multiphase system. With this new development, we have opened up a new area of crystallography under the high P–T conditions of the deep lower mantle. This paper explains key challenges in studying multiphase systems and demonstrates the unique capabilities of high-pressure multigrain XRD through successful examples of its applications.展开更多
Coupling nanoscale transmission X-ray microscopy (nanoTXM) with a diamond anvil cell (DAC) has exciting potential as a powerful three-dimensional probe for non-destructive imaging at high spatial resolution of materia...Coupling nanoscale transmission X-ray microscopy (nanoTXM) with a diamond anvil cell (DAC) has exciting potential as a powerful three-dimensional probe for non-destructive imaging at high spatial resolution of materials under extreme conditions. In this article, we discuss current developments in high-resolution X-ray imaging and its application in high-pressure nanoTXM experiments in a DAC with third-generation synchrotron X-ray sources, including technical considerations for preparing successful measurements. We then present results from a number of recent in situ high-pressure measurements investigating equations of state (EOS) in amorphous or poorly crystalline materials and in pressureinduced phase transitions and electronic changes. These results illustrate the potential this technique holds for addressing a wide range of research areas, ranging from condensed matter physics and solidstate chemistry to materials science and planetary interiors. Future directions for this exciting technique and opportunities to improve its capabilities for broader application in high-pressure science are discussed.展开更多
In situ Raman spectroscopy and x-ray diffraction measurements are used to explore the structural stability of CaB6 at high pressures and room temperature. The results show no evidence of structural phase transitions u...In situ Raman spectroscopy and x-ray diffraction measurements are used to explore the structural stability of CaB6 at high pressures and room temperature. The results show no evidence of structural phase transitions up to at least 40 GPa.The obtained equation of state with smooth pressure dependencies yields a zero-pressure isothermal bulk modulus B0=170(5) GPa, which agrees well with the previous measurements. The frequency shifts for A1g, Eg, and T2g vibrational modes of polycrystalline CaB6 are obtained with pressure uploading. As the pressure increases, all the vibration modes have smooth monotonic pressure dependence. The Gr¨uneisen parameter of Eg modes is the largest, indicating its largest dependence on the volume of a crystal lattice.展开更多
We have studied the high-pressure compression behavior of molybdenum up to 60 GPa by synchrotron radial x-ray diffraction(RXRD)in a diamond anvil cell(DAC).It is found that all diffraction peaks of molybdenum undergo ...We have studied the high-pressure compression behavior of molybdenum up to 60 GPa by synchrotron radial x-ray diffraction(RXRD)in a diamond anvil cell(DAC).It is found that all diffraction peaks of molybdenum undergo a split at around 27 GPa,and we believe that a phase transition from a body-centered cubic structure to a rhombohedral structure at room pressure has occurred.The slope of pressure–volume curve shows continuity before and after this phase transition,when fitting the pressure–volume curves of the body-centered cubic structure at low pressure and the rhombohedral structure at high pressure.A bulk modulus of 261.3(2.7)GPa and a first-order derivative of the bulk modulus of 4.15(0.14)are obtained by using the nonhydrostatic compression data at the angleψ=54.7°between the diffracting plane normal and stress axis.展开更多
In the High-Pressure Synergetic Measurements Station (HP-SymS) of the Synergic Extreme Condition User Facility (SECUF), we will develop ultrahigh-pressure devices based on diamond-anvil cell (DAC) techniques, wi...In the High-Pressure Synergetic Measurements Station (HP-SymS) of the Synergic Extreme Condition User Facility (SECUF), we will develop ultrahigh-pressure devices based on diamond-anvil cell (DAC) techniques, with a target pressure up to 300 GPa. With the use of cryostat and magnet, we will reach 300 GPa4.2 K-9 T and conduct simultaneous measurements of the electrical-transport property and Raman/Brillouin spectrascopy. With resistance heating and laser heating, we will reach temperatures of at least 1000 and 3000 K, respectively, coupled with Raman/Brillouin spectroscopy measurements. Some designs of supporting devices, such as a femtosecond laser gasket-drilling device, electrode-deposition device, and the gas-loading device, are also introduced in this article. Finally, we conclude by providing some perspectives on the applications of the DAC in related research fields.展开更多
The amount of literature on both melting and thermal conductivity of iron at Earth’s core conditions is overwhelming and the discrepancies are very large.There is a broad range of experimental techniques each of whic...The amount of literature on both melting and thermal conductivity of iron at Earth’s core conditions is overwhelming and the discrepancies are very large.There is a broad range of experimental techniques each of which is flawed to a certain degree,which may explain the discrepancy.In this report,we present new data using a different method for determining the phase behavior and resistivity of iron in the laser-heated diamond cell by measuring the electrical resistance of both solid and liquid iron wires.The experiment avoids some of the major flaws of previous experiments,the most important of which is the detection of the onset of melting.These measurements confirm a shallow melting curve found earlier and the resistivity data imply a trend towards low thermal conductivity in the liquid outer core.展开更多
The pressure dependence of the onset of the formation of Ta C and Ta2 C from the elements has been investigated by in situ X-ray diffraction and pyrometry.Ta C has been synthesized by the reaction of Ta and graphite a...The pressure dependence of the onset of the formation of Ta C and Ta2 C from the elements has been investigated by in situ X-ray diffraction and pyrometry.Ta C has been synthesized by the reaction of Ta and graphite at pressures between 8.6 and 14.3 GPa and at temperatures up to 2,300 K using a laser-heated diamond anvil cell. The products were characterized by X-ray diffraction. Ta and graphite begin to react around 1,100 K at ambient pressure conditions, and the reaction temperature increases with increasing pressure. A linear extrapolation of these data is consistent with recent observations of the formation of Ta C at 90 GPa and 3,600 K. We show that diffusion of carbon into tantalum significantly changes the lattice parameter of up to 2 % in the pressure range of up to19 GPa. In some experiments, Ta2 C was formed concomitantly. The experimentally determined bulk modulus of Ta2 C is B0;exp:= 286(5) GPa. Other tantalum carbide phases were not observed.展开更多
文摘Research on the melting phenomenon is the most challenging work in the high pressure/temperature field. Until now,large discrepancies still exist in the melting curve of iron, the most interesting and extensively studied element in geoscience research. Here we present a summary about techniques detecting melting in the laser heating diamond anvil cell.
基金Ministry of Earth Sciences,Government of India for financial support under the project grant no.MoES/16/25/10-RDEASDST,INSPIRE program by Department of Science and Technology,Government of India for financial support。
文摘Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculated using a novel thermodynamical method.Thermal conductivity of fee(γ)-Fe increases up to a pressure of about46 GPa.We find thermal conductivity values in the range of 70-80 Wm-1K-1(with an uncertainty of 40%),almost constant with pressure,in the hcp(e)phase of Fe.We attribute the pressure independent k above 46 GPa to the strong electronic correlation effects driven by the electronic topological transition(ETT).We predict a value of thermal conductivity ofε-Fe of about 40±16 Wm-1K-1 at the outer core of Earth.
文摘Laser-heated diamond-anvil cell (LHDAC) is emerging as the most suitable, economical and versatile tool for the measurement of a large spectrum of physical properties of materials under extreme pressure and temperature conditions. In this review, the recent developments in the instrumentation, pressure and temperature measurement techniques, results of experimental investigations from the literature were discussed. Also, the future scope of the technique in various avenues of science was explored.
基金supported by the Chinese SinoProbe Project (SinoProbe-03-01)the National Natural Science Foundation of China (41372088)the China Geological Survey Program (1212011220805)
文摘The homogenization of silicate melt inclusions (SMIs),small droplets of silicate melt trapped in magmatic minerals,is an important component of petrogenetic and magmatic research.Conventional homogenization experiments on SMIs use microscope-mounted heating stages capable of producing high temperatures at 1 atm and cold-seal high-pressure vessels.Heating stages are generally used for SMIs with low internal pressures and allow in situ observations of the homogenization processes.In contrast,cold-seal high-pressure vessels are generally used to heat SMIs that have high internal pressures,although the homogenized SMIs can only be observed after quenching in this approach.Here we outline an alternative approach that uses a hydrothermal diamond anvil cell (HDAC) apparatus to homogenize SMIs.This is the only current method wherein phase changes in high-internal-pressure SMIs can be observed in situ during homogenization experiments,which represents an advantage over other conventional methods.Using an HDAC apparatus prevents high-internal-pressure SMIs from decrepitating during heating by elevating their external pressure,in addition to allowing in situ observations of SMIs.The type-V HDAC that is currently being used has a shorter distance between the sample chamber and the observation window than earlier types,potentially enabling continuous observation of the processes involved in heating and SMI homogenization through an objective lens with a long working distance.Homogenization experiments using HDAC require that a number of steps,including HDAC preparation,sample preparation,sample loading,preheating,and formal heating,be carefully followed.Homogenization experiments on SMIs within granite samples from the Jiajika pegmatite deposit (Sichuan,China) are best performed using an HDAC-based approach,because the elevated proper external pressure of these SMIs,combined with a short heating duration,helps to suppress material leakage and any reactions within the SMIs,in addition to allowing in situ observations during homogenization experiments.Furthermore,using the HDAC approach has other benefits:heating rates can be precisely controlled,wafer oxidization can be prevented,and samples can be subjected to in situ microbeam analysis.In summary,homogenization using HDAC provides more reliable results than those obtained using conventional heating equipment.Future developments will include improvements to the quenching method and temperature controls for the HDAC apparatus,thereby improving the utility of this approach for SMI homogenization experiments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10875142,11079040,and 11075175)The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences(Grant Nos.KJCX2-SW-N20,KJCX2-SW-N03,and SYGNS04)
文摘This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, timeresolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF(Beijing Synchrotron Radiation Facility) and some results are also presented.
基金the National Natural Science Foundation of China (41574080 and U1530402).
文摘The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for understanding deep mantle processes. Such high P–T experiments are commonly conducted in a laser-heated diamond anvil cell, producing a multiphase assemblage consisting of 100 nm to submicron crystallite grains. The structures of these lower mantle phases often cannot be preserved upon pressure quenching;thus, in situ characterization is needed. The X-ray diffraction (XRD) pattern of such a multiphase assemblage usually displays a mixture of diffraction spots and rings as a result of the coarse grain size relative to the small X-ray beam size (3–5 lm) available at the synchrotron facilities. Severe peak overlapping from multiple phases renders the powder XRD method inadequate for indexing new phases and minor phases. Consequently, structure determination of new phases in a high P–T multiphase assemblage has been extremely difficult using conventional XRD techniques. Our recent development of multigrain XRD in high-pressure research has enabled the indexation of hundreds of individual crystallite grains simultaneously through the determination of crystallographic orientations for these individual grains. Once indexation is achieved, each grain can be treated as a single crystal. The combined crystallographic information from individual grains can be used to determine the crystal structures of new phases and minor phases simultaneously in a multiphase system. With this new development, we have opened up a new area of crystallography under the high P–T conditions of the deep lower mantle. This paper explains key challenges in studying multiphase systems and demonstrates the unique capabilities of high-pressure multigrain XRD through successful examples of its applications.
基金supported by the Department of Energy(DOE)through the Stanford Institute for Materials&Energy Sciences(DE-AC02-76SF00515)
文摘Coupling nanoscale transmission X-ray microscopy (nanoTXM) with a diamond anvil cell (DAC) has exciting potential as a powerful three-dimensional probe for non-destructive imaging at high spatial resolution of materials under extreme conditions. In this article, we discuss current developments in high-resolution X-ray imaging and its application in high-pressure nanoTXM experiments in a DAC with third-generation synchrotron X-ray sources, including technical considerations for preparing successful measurements. We then present results from a number of recent in situ high-pressure measurements investigating equations of state (EOS) in amorphous or poorly crystalline materials and in pressureinduced phase transitions and electronic changes. These results illustrate the potential this technique holds for addressing a wide range of research areas, ranging from condensed matter physics and solidstate chemistry to materials science and planetary interiors. Future directions for this exciting technique and opportunities to improve its capabilities for broader application in high-pressure science are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572108,51632002,11504127,11674122,11574112,11474127,and11634004)the 111 Project,China(Grant No.B12011)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT 15R23)the National Found for Fostering Talents of Basic Science,China(Grant No.J1103202)
文摘In situ Raman spectroscopy and x-ray diffraction measurements are used to explore the structural stability of CaB6 at high pressures and room temperature. The results show no evidence of structural phase transitions up to at least 40 GPa.The obtained equation of state with smooth pressure dependencies yields a zero-pressure isothermal bulk modulus B0=170(5) GPa, which agrees well with the previous measurements. The frequency shifts for A1g, Eg, and T2g vibrational modes of polycrystalline CaB6 are obtained with pressure uploading. As the pressure increases, all the vibration modes have smooth monotonic pressure dependence. The Gr¨uneisen parameter of Eg modes is the largest, indicating its largest dependence on the volume of a crystal lattice.
基金Project supported by the National Natural Science Foundation of China(Grant No.12075163)the Open fund project of Industrial Technology Institute of Sichuan University of Arts and Science,China(Grant No.ZNZZ2101)+1 种基金the Project of Ph.D special research of Sichuan University of Arts and Science,China(Grant No.2019BS006Z)supported by the Chinese Academy of Sciences(Grant Nos.KJCX2-SW-N03 and KJCX2-SW-N20)。
文摘We have studied the high-pressure compression behavior of molybdenum up to 60 GPa by synchrotron radial x-ray diffraction(RXRD)in a diamond anvil cell(DAC).It is found that all diffraction peaks of molybdenum undergo a split at around 27 GPa,and we believe that a phase transition from a body-centered cubic structure to a rhombohedral structure at room pressure has occurred.The slope of pressure–volume curve shows continuity before and after this phase transition,when fitting the pressure–volume curves of the body-centered cubic structure at low pressure and the rhombohedral structure at high pressure.A bulk modulus of 261.3(2.7)GPa and a first-order derivative of the bulk modulus of 4.15(0.14)are obtained by using the nonhydrostatic compression data at the angleψ=54.7°between the diffracting plane normal and stress axis.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0401503)the National Natural Science Foundation of China(Grant Nos.11575288 and 51402350)
文摘In the High-Pressure Synergetic Measurements Station (HP-SymS) of the Synergic Extreme Condition User Facility (SECUF), we will develop ultrahigh-pressure devices based on diamond-anvil cell (DAC) techniques, with a target pressure up to 300 GPa. With the use of cryostat and magnet, we will reach 300 GPa4.2 K-9 T and conduct simultaneous measurements of the electrical-transport property and Raman/Brillouin spectrascopy. With resistance heating and laser heating, we will reach temperatures of at least 1000 and 3000 K, respectively, coupled with Raman/Brillouin spectroscopy measurements. Some designs of supporting devices, such as a femtosecond laser gasket-drilling device, electrode-deposition device, and the gas-loading device, are also introduced in this article. Finally, we conclude by providing some perspectives on the applications of the DAC in related research fields.
基金supported by the National Science Foundation (No. 1248553)
文摘The amount of literature on both melting and thermal conductivity of iron at Earth’s core conditions is overwhelming and the discrepancies are very large.There is a broad range of experimental techniques each of which is flawed to a certain degree,which may explain the discrepancy.In this report,we present new data using a different method for determining the phase behavior and resistivity of iron in the laser-heated diamond cell by measuring the electrical resistance of both solid and liquid iron wires.The experiment avoids some of the major flaws of previous experiments,the most important of which is the detection of the onset of melting.These measurements confirm a shallow melting curve found earlier and the resistivity data imply a trend towards low thermal conductivity in the liquid outer core.
基金the Deutsche Forschungsgemeinschaft (DFG), Germany, for financial support within the priority programme Matter at extreme conditions SPP1236 (project WI 1232/25-1)The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy under contract DE-AC02-05CH11231+1 种基金This work was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Science under NSF Cooperative Agreement EAR 06-49658the Vereinigung der Freunde und F rderer der Goethe-Universitt Frankfurt
文摘The pressure dependence of the onset of the formation of Ta C and Ta2 C from the elements has been investigated by in situ X-ray diffraction and pyrometry.Ta C has been synthesized by the reaction of Ta and graphite at pressures between 8.6 and 14.3 GPa and at temperatures up to 2,300 K using a laser-heated diamond anvil cell. The products were characterized by X-ray diffraction. Ta and graphite begin to react around 1,100 K at ambient pressure conditions, and the reaction temperature increases with increasing pressure. A linear extrapolation of these data is consistent with recent observations of the formation of Ta C at 90 GPa and 3,600 K. We show that diffusion of carbon into tantalum significantly changes the lattice parameter of up to 2 % in the pressure range of up to19 GPa. In some experiments, Ta2 C was formed concomitantly. The experimentally determined bulk modulus of Ta2 C is B0;exp:= 286(5) GPa. Other tantalum carbide phases were not observed.