期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Potential application of high pressure carbon dioxide in treated wastewater and water disinfection:Recent overview and further trends 被引量:1
1
作者 Huy Thanh Vo Tsuyoshi Imai +2 位作者 Truc Thanh Ho Thanh-Loc Thi Dang Son Anh Hoang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期38-47,共10页
Recently emerging disadvantages in conventional disinfection have heightened the need for finding a new solution. Developments in the use of high pressure carbon dioxide for food preservation and sterilization have le... Recently emerging disadvantages in conventional disinfection have heightened the need for finding a new solution. Developments in the use of high pressure carbon dioxide for food preservation and sterilization have led to a renewed interest in its applicability in wastewater treatment and water disinfection. Pressurized CO2 is one of the most investigated methods of antibacterial treatment and has been used extensively for decades to inhibit pathogens in dried food and liquid products. This study reviews the literature concerning the utility of CO2 as a disinfecting agent, and the pathogen inactivation mechanism of CO2 treatment is evaluated based on all available research. In this paper, it will be argued that the successful application and high effectiveness of CO2 treatment in liquid foods open a potential opportunity for its use in wastewater treatment and water disinfection. The findings from models with different operating conditions(pressure, temperature, microorganism, water content, media …) suggest that most microorganisms are successfully inhibited under CO2 treatment. It will also be shown that the bacterial deaths under CO2 treatment can be explained by many different mechanisms.Moreover, the findings in this study can help to address the recently emerging problems in water disinfection, such as disinfection by-products(resulting from chlorination or ozone treatment). 展开更多
关键词 high pressure CO2 Inactivation effect Inactivation mechanism
原文传递
Dynamic mechanical behavior of ultra-high strength steel 30CrMnSiNi2A at high strain rates and elevated temperatures 被引量:8
2
作者 Qiu-lin Niu Wei-wei Ming +2 位作者 Ming Chen Si-wen Tang Peng-nan Li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第7期724-729,共6页
During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting pro... During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature. 展开更多
关键词 30CrMnSiNi2A steel Dynamic mechanical behavior Split Hopkinson pressure bar high temperature high strain rate Ultra-high strength steel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部