A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy ...A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy is subsequently tested through isochronal annealing for 0.5 h at 373 K to 673 K. The results reveal a thermal stability that is vastly superior to that of conventional Mg-based alloys processed by severe plastic deformation: the grain size remains at around 50 nm on heating to 573 K, and as the temperature is increased to 673 K,grain growth is restricted to within 500 nm. The stability of grain refinement of the present alloy/processing combination allowing grain size to be limited to 55 nm after exposure at 573 K, appears to be nearly one order of magnitude better than for the other SPD processed Mg-RE type alloys, and 2 orders of magnitude better than those of SPD processed RE-free Mg alloys. This superior thermal stability is attributed to formation of co-clusters near and segregation at grain boundaries, which cause a thermodynamic stabilization of grain size, as well as formation of β-Mg_(5)RE equilibrium phase at grain boundaries, which impede grain growth by the Zener pinning effect. The hardness of the nanostructured Mg-Gd-Y-Zn-Zr alloy increases with increasing annealing temperature up to 573 K, which is quite different from the other SPD-processed Mg-based alloys. The high hardness of 136 HV after annealing at 573 K is mainly due to solute segregation and solute clustering at or near grain boundaries.展开更多
Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HR...Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.展开更多
Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their c...Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their coarse-grained counterparts under normal conditions. Experimental evidences are introduced on non-equilibrium grain boundaries, deformation twinnings and partial dislocation emissions from grain boundaries. Some of these features can be explained by the results reported from molecular-dynamics simulations of pure FCC metals. Special emphasis is laid on the recent observations of high density hexagonal and rhombic shaped nanostructures with an average size of 3 nm in the A1-Mg alloys processed by high pressure torsion. A possible formation process of these nanostructures is proposed based on molecular-dynamics simulations.展开更多
In the present study,a fully lamellar Ti6Al4V alloy was severely deformed by high pressure torsion(HPT)process under a pressure of 7.5 GPa up to 10 revolutions.Experimental results revealed that the microhardness of T...In the present study,a fully lamellar Ti6Al4V alloy was severely deformed by high pressure torsion(HPT)process under a pressure of 7.5 GPa up to 10 revolutions.Experimental results revealed that the microhardness of Ti6Al4V was increased remarkably by about~41%and saturated at about 432 Hv after the HPT process.A relatively uniform bulk nanostructured Ti6Al4V alloy with an average grain size of about52.7 nm was obtained eventually,and no obvious formation of metastableωphase was detected by XRD analysis.For the first time,the tribological properties of the HPT processed Ti6Al4V alloy were investigated by a ball-on-disc test at room temperature under a dry condition.It was found that HPT process had a great influence on the friction and wear behaviors of Ti6Al4V alloy.With increasing the number of HPT revolutions,both friction coefficient and specific wear rate were obviously decreased due to the reduction of abrasion and adhesion wears.After being deformed by 10 HPT revolutions,the friction coefficient was reduced from about 0.49 to 0.37,and the specific wear rate was reduced by about 48%.The observations in this study indicated that HPT processed Ti6Al4V alloys had good potential in structural applications owing to their greatly improved mechanical and tribological properties.展开更多
In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the format...In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the formation of the planar defects in the high pressure torsion (HPT) alloys was conducted using high-resolution transmission electron microscopy (HRTEM). The results show that high density defects in the HRTEM images disappear completely when these images are exposed under the electron beam for some duration of time. At the same time, lattice defects are never observed within no-defect areas even when the beam-exposure increases to the degree that holes appear in the areas. Therefore, it is confirmed that the planar defects observed in the HPT alloys mainly result from the significant plastic deformation and are not due to the radiation effect during HRTEM observation.展开更多
基金supported by National Natural Science Foundation of China (No.U21A2047 and 51971076)China Postdoctoral Science Foundation (Grant No.2019M653599)Guangdong Basic and Applied Basic Research Foundation (No.2019A1515110289)。
文摘A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy is subsequently tested through isochronal annealing for 0.5 h at 373 K to 673 K. The results reveal a thermal stability that is vastly superior to that of conventional Mg-based alloys processed by severe plastic deformation: the grain size remains at around 50 nm on heating to 573 K, and as the temperature is increased to 673 K,grain growth is restricted to within 500 nm. The stability of grain refinement of the present alloy/processing combination allowing grain size to be limited to 55 nm after exposure at 573 K, appears to be nearly one order of magnitude better than for the other SPD processed Mg-RE type alloys, and 2 orders of magnitude better than those of SPD processed RE-free Mg alloys. This superior thermal stability is attributed to formation of co-clusters near and segregation at grain boundaries, which cause a thermodynamic stabilization of grain size, as well as formation of β-Mg_(5)RE equilibrium phase at grain boundaries, which impede grain growth by the Zener pinning effect. The hardness of the nanostructured Mg-Gd-Y-Zn-Zr alloy increases with increasing annealing temperature up to 573 K, which is quite different from the other SPD-processed Mg-based alloys. The high hardness of 136 HV after annealing at 573 K is mainly due to solute segregation and solute clustering at or near grain boundaries.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of China,ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.
基金Project(50971087) supported by the National Natural Science Foundation of ChinaProject supported by the Research Council of Norway under the Strategic University Program on Light Metals Technology Projects(67692, 71594) supported by the Hungarian National Science Foundation
文摘Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their coarse-grained counterparts under normal conditions. Experimental evidences are introduced on non-equilibrium grain boundaries, deformation twinnings and partial dislocation emissions from grain boundaries. Some of these features can be explained by the results reported from molecular-dynamics simulations of pure FCC metals. Special emphasis is laid on the recent observations of high density hexagonal and rhombic shaped nanostructures with an average size of 3 nm in the A1-Mg alloys processed by high pressure torsion. A possible formation process of these nanostructures is proposed based on molecular-dynamics simulations.
基金Australian Academy of Science(AAS)and Japan Society for the Promotion of Science(JSPS)for awarding him an international fellowship and financial supportAustralian Research Council(ARC)for awarding her the Discovery Early Career Researcher Award(DECRA)fellowship(grant no.DE180100124)+2 种基金the financial supports from the Cross-ministerial Strategic Innovation Promotion Program(SIP)from the Cabinet Office of Japanese government,the Elements Strategy Initiative for Structural Materials(ESISM,No.JPMXP0112101000)in Kyoto University from the Ministry of Education,Culture,Sports,Science and Technology(MEXT),JapanJST CREST(JPMJCR1994)from Japan Science and Technology Agency(JST)partly supported by Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing,Central South University in China。
文摘In the present study,a fully lamellar Ti6Al4V alloy was severely deformed by high pressure torsion(HPT)process under a pressure of 7.5 GPa up to 10 revolutions.Experimental results revealed that the microhardness of Ti6Al4V was increased remarkably by about~41%and saturated at about 432 Hv after the HPT process.A relatively uniform bulk nanostructured Ti6Al4V alloy with an average grain size of about52.7 nm was obtained eventually,and no obvious formation of metastableωphase was detected by XRD analysis.For the first time,the tribological properties of the HPT processed Ti6Al4V alloy were investigated by a ball-on-disc test at room temperature under a dry condition.It was found that HPT process had a great influence on the friction and wear behaviors of Ti6Al4V alloy.With increasing the number of HPT revolutions,both friction coefficient and specific wear rate were obviously decreased due to the reduction of abrasion and adhesion wears.After being deformed by 10 HPT revolutions,the friction coefficient was reduced from about 0.49 to 0.37,and the specific wear rate was reduced by about 48%.The observations in this study indicated that HPT processed Ti6Al4V alloys had good potential in structural applications owing to their greatly improved mechanical and tribological properties.
基金Project (50971087) supported by the National Natural Science Foundation of ChinaProject (BK2012715) supported by the Basic Research Program (Natural Science Foundation) of Jiangsu Province, China+1 种基金Project (10371800) supported by the Research Council of Norway under the NEW Light (NEWLIGHT) Metals of the Strategic Area (SA) MaterialsProject (11JDG070) supported by the Senior Talent Research Foundation of Jiangsu University, China
文摘In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the formation of the planar defects in the high pressure torsion (HPT) alloys was conducted using high-resolution transmission electron microscopy (HRTEM). The results show that high density defects in the HRTEM images disappear completely when these images are exposed under the electron beam for some duration of time. At the same time, lattice defects are never observed within no-defect areas even when the beam-exposure increases to the degree that holes appear in the areas. Therefore, it is confirmed that the planar defects observed in the HPT alloys mainly result from the significant plastic deformation and are not due to the radiation effect during HRTEM observation.