High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the...High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the advantages of high energy density and high instant expansibility,high pressure gas has been widely used in many applications.However,systematic researches are lacked especially in pressure characteristics which are very important in pneumatic system at present.In a high pressure pneumatic system,the pressure of a fixed cavity with annular clearance needs to be controlled within a wide range,so a single stage proportional slide valve is proposed to satisfy the requirements of high pressure and low flow rate.First,working principle and structure of the pressure assembly and the slide valve are introduced.Then mathematical model of the high pressure pneumatic system is built up;controllable pressure range is simulated,and influence of uncertain factors,such as fit clearance of the pressure valve and the cavity on controllable pressure,is discussed.Finally,a test bench of the pressure assembly is built up,and the controllable pressure and step response experiments are carried out.Both simulation and experimental results show that the designed slide valve can satisfy the requirements well.The proposed clearance presumption method based on simulation and experimental results is valuable for indirect measurement of processing tolerance.展开更多
To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysi...To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysis of BTRRC was accomplished from a probabilistic prospective by considering nonlinear material attributes and dynamic loads. Firstly, multiply response surface model(MRSM) was proposed and the mathematical model of this method was established based on quadratic function. Secondly, the BTRRC was decomposed into three sub-components(turbine disk, blade and casing), and then the single response surface functions(SRSFs) of three structures were built in line with the basic idea of MRSM. Thirdly, the response surface function(MRSM) of BTRRC was reshaped by coordinating SRSFs. From the analysis, it is acquired to probabilistic distribution characteristics of input-output variables, failure probabilities of blade-tip clearance under different static blade-tip clearances δ and major factors impacting BTRRC. Considering the reliability and efficiency of gas turbine, δ=1.87 mm is an optimally acceptable option for rational BTRRC. Through the comparison of three analysis methods(Monte Carlo method, traditional response surface method and MRSM), the results show that MRSM has higher accuracy and higher efficiency in reliability sensitivity analysis of BTRRC. These strengths are likely to become more prominent with the increasing times of simulations. The present study offers an effective and promising approach for reliability sensitivity analysis and optimal design of complex dynamic assembly relationship.展开更多
基金supported by National Natural Science Foundation of China(Grant No.50575202)
文摘High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the advantages of high energy density and high instant expansibility,high pressure gas has been widely used in many applications.However,systematic researches are lacked especially in pressure characteristics which are very important in pneumatic system at present.In a high pressure pneumatic system,the pressure of a fixed cavity with annular clearance needs to be controlled within a wide range,so a single stage proportional slide valve is proposed to satisfy the requirements of high pressure and low flow rate.First,working principle and structure of the pressure assembly and the slide valve are introduced.Then mathematical model of the high pressure pneumatic system is built up;controllable pressure range is simulated,and influence of uncertain factors,such as fit clearance of the pressure valve and the cavity on controllable pressure,is discussed.Finally,a test bench of the pressure assembly is built up,and the controllable pressure and step response experiments are carried out.Both simulation and experimental results show that the designed slide valve can satisfy the requirements well.The proposed clearance presumption method based on simulation and experimental results is valuable for indirect measurement of processing tolerance.
基金Projects(51175017,51245027)supported by the National Natural Science Foundation of China
文摘To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysis of BTRRC was accomplished from a probabilistic prospective by considering nonlinear material attributes and dynamic loads. Firstly, multiply response surface model(MRSM) was proposed and the mathematical model of this method was established based on quadratic function. Secondly, the BTRRC was decomposed into three sub-components(turbine disk, blade and casing), and then the single response surface functions(SRSFs) of three structures were built in line with the basic idea of MRSM. Thirdly, the response surface function(MRSM) of BTRRC was reshaped by coordinating SRSFs. From the analysis, it is acquired to probabilistic distribution characteristics of input-output variables, failure probabilities of blade-tip clearance under different static blade-tip clearances δ and major factors impacting BTRRC. Considering the reliability and efficiency of gas turbine, δ=1.87 mm is an optimally acceptable option for rational BTRRC. Through the comparison of three analysis methods(Monte Carlo method, traditional response surface method and MRSM), the results show that MRSM has higher accuracy and higher efficiency in reliability sensitivity analysis of BTRRC. These strengths are likely to become more prominent with the increasing times of simulations. The present study offers an effective and promising approach for reliability sensitivity analysis and optimal design of complex dynamic assembly relationship.