High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achiev...High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.展开更多
Since the early 1950’s the use of Germanium has been continuously growing as new applications are being developed. Its first commercial usage as the main material, from which the semiconductors were made, was later r...Since the early 1950’s the use of Germanium has been continuously growing as new applications are being developed. Its first commercial usage as the main material, from which the semiconductors were made, was later replaced by Silicon. The applications were then shifted to a key component in fiber optics, infrared night vision devices and space solar cells, as well as a polymerization catalyst for polyethylene terephthalate (PET). With the advance development in new technologies, the attentions have been brought back to Germanium due to its excellent semiconductor properties. New applications on the field of high efficiency solar cells, SiGe based chips, LED technologies, etc., are being developed and show a great potential. According to DERA (Deutsche Rohstoffagentur/German Mineral Resources Agency), the demand for Ge will grow considerably by 2030, pushed mostly by the increase in the fiber optics market and advanced materials sector [1]. Therefore, this paper focuses on an overview of the production chain of Germanium, especially from its concentrate up to the single crystal growth of its valuable ultra-pure metallic form to be used in high technological applications.展开更多
This paper reports that the high-K HfO2 gate dielectrics are fabricated on n-germanium substrates by sputtering Hf on Ge and following by a furnace annealing. The impacts of sputtering ambient, annealing ambient and a...This paper reports that the high-K HfO2 gate dielectrics are fabricated on n-germanium substrates by sputtering Hf on Ge and following by a furnace annealing. The impacts of sputtering ambient, annealing ambient and annealing temperature on the electrical properties of high-K HfO2 gate dielectrics on germanium substrates are investigated. Experimental results indicate that high-K HfO2 gate dielectrics on germanium substrates with good electrical characteristics are obtained, the electrical properties of high-K HfO2 gate dielectrics is strongly correlated with sputtering ambient, annealing ambient and annealing temperature.展开更多
Two optical methods, namely crystal facet reflection and etching pits reflection, were used to orient and high-purity germanium crystals. The X-ray diffraction patterns of three slices that were cut from the oriented ...Two optical methods, namely crystal facet reflection and etching pits reflection, were used to orient and high-purity germanium crystals. The X-ray diffraction patterns of three slices that were cut from the oriented and crystals were measured by X-ray diffraction. The experimental errors of crystal facet reflection method and etching pits reflection method are in the range of 0.05° - 0.12°. The crystal facet reflection method and etching pits reflection method are extremely simple and cheap and their accuracies are acceptable for characterizing high purity detector-grade germanium crystals.展开更多
This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5-20 MeV at fluence ranging from 1×109 to 7×1013 cm-2, an...This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5-20 MeV at fluence ranging from 1×109 to 7×1013 cm-2, and then their electric parameters were measured at AM0. It was shown that the Isc, Voc and Pmax decrease as the proton energy increasing, and the degradation is relative to proton irradiation-induced defect with a level of Ec-0.41 eV in irradiated GaAs/Ge cells.展开更多
Purification is a primary application of zone melting, in which the improvement of efficiency, production yield and minimum achievable impurity level are always the research focus due to the increasing demand for high...Purification is a primary application of zone melting, in which the improvement of efficiency, production yield and minimum achievable impurity level are always the research focus due to the increasing demand for high purity metals. This paper has systematically outlined the whole development of related research on zone refining of metals including basic theories, variants of zone refining, parametric optimization, numerical models, and high purity analytical methods. The collection of this information could be of good value to improve the refining efficiency and the production of high purity metals by zone refining.展开更多
1 .Introduetion Germanium differs from other metals for its semieonducting ProPerties.The first major stud-ies of solid state Physies in utilizing semieondueting ProPerties were due Primarily to the availabili-ty of h...1 .Introduetion Germanium differs from other metals for its semieonducting ProPerties.The first major stud-ies of solid state Physies in utilizing semieondueting ProPerties were due Primarily to the availabili-ty of high Purity germanium.P一tyPe germanium erystal ean be obtained by doPing high Puritygermanium with 3 valenee element as indium,gallium or boron.Similarlyn一tyPe germanium erys-tal can be doPed with 5 valenee element展开更多
Strain-relaxed SiGe is an attractive material for use as a substrate of strained Si, in which carrier mobility is higher than that of bulk Si. The concept of this study is the use of porous Si as a sponge like substra...Strain-relaxed SiGe is an attractive material for use as a substrate of strained Si, in which carrier mobility is higher than that of bulk Si. The concept of this study is the use of porous Si as a sponge like substrate so that a SiGe lattice can relax without introducing dislocations. We produced porous Si specimens by electrochemical anodization and annealed them under a H2 atmosphere. Then, SiGe thin films were grown by gas-source molecular beam epitaxy. We observed the microstructure of the specimens using transmission electron microscopy. The result showed that we succeeded in producing a single-crys- tal continuous Si0.73Ge0.27 film with a 10% relaxation ratio and a low dislocation density on porous Si.展开更多
We have systematically investigated the structures of Sr-Ge system under pressures up to 200 GPa and found six stable stoichiometric structures,they being Sr_(3)Ge,Sr_(2)Ge,SrGe,SrGe_(2),SrGe_(3),and SrGe_(4).We demon...We have systematically investigated the structures of Sr-Ge system under pressures up to 200 GPa and found six stable stoichiometric structures,they being Sr_(3)Ge,Sr_(2)Ge,SrGe,SrGe_(2),SrGe_(3),and SrGe_(4).We demonstrate the interesting structure evolution behaviors in Sr-Ge system with the increase of germanium content,Ge atoms arranging into isolated anions in Sr_(3)Ge,chains in Sr_(2) Ge,square units in SrGe,trigonal units and hexahedrons in SrGe_(2),cages in SrGe_(3),hexagons and Geg rings in SrGe_(4).The structural diversity produces various manifestations of electronic structures,which is of benefit to electrical transportation.Among them,these novel phases with metallic structures show superconductivity(maximum T_(c)~8.94 K for Pmmn Sr_(3)Ge).Notably,the n-type semiconducting Pnma SrGe_(2) structure exhibits high Seebeck coefficient and excellent electrical conductivity along the y direction,leading to a high ZT value up to 1.55 at 500 K,which can be potential candidates as high-performance thermoelectrics.Our results will enable the development of fundamental science in condensed matter physics and potential applications in novel electronics or thermoelectric materials.展开更多
Many scientific domains use gamma-ray spectrometry, but non-destructive gamma scanning and gamma emission tomography of radioactive fuel in particular. In the experimental setting, a collimator is frequently employed ...Many scientific domains use gamma-ray spectrometry, but non-destructive gamma scanning and gamma emission tomography of radioactive fuel in particular. In the experimental setting, a collimator is frequently employed to focus on a particular location of interest in the fuel. Predictive models for the transmitted gamma-ray intensity through the collimator are required for both the optimization of instrument design and the planning of measurement campaigns. Gamma-ray transport accuracy is frequently predicted using Monte Carlo radiation transport methods, but using these tools in low-efficiency experimental setups is challenging due to the lengthy computation times needed. This study focused on the full-energy peak intensity that was transmitted through several collimator designs, including rectangle and cylinder. The rate of photons arriving at a detector on the other side of the collimator was calculated for anisotropic source of SNM (U<sub>3</sub>O<sub>8</sub>). Some geometrical assumptions that depended on the source-to-collimator distance and collimator dimensions (length, radius or length, height, and width) were applied to achieve precise findings.展开更多
基金supported by the National Natural Science Foundation of China(No.12005017).
文摘High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.
文摘Since the early 1950’s the use of Germanium has been continuously growing as new applications are being developed. Its first commercial usage as the main material, from which the semiconductors were made, was later replaced by Silicon. The applications were then shifted to a key component in fiber optics, infrared night vision devices and space solar cells, as well as a polymerization catalyst for polyethylene terephthalate (PET). With the advance development in new technologies, the attentions have been brought back to Germanium due to its excellent semiconductor properties. New applications on the field of high efficiency solar cells, SiGe based chips, LED technologies, etc., are being developed and show a great potential. According to DERA (Deutsche Rohstoffagentur/German Mineral Resources Agency), the demand for Ge will grow considerably by 2030, pushed mostly by the increase in the fiber optics market and advanced materials sector [1]. Therefore, this paper focuses on an overview of the production chain of Germanium, especially from its concentrate up to the single crystal growth of its valuable ultra-pure metallic form to be used in high technological applications.
基金Project supported by the National Natural Science Foundation of China (Grant No 90307006), by the National High Tech. Development Program of China (Grant No 2003AA1Z1370), and by the State Key Development Program for Basic Research of China (Grant No G2000036500).
文摘This paper reports that the high-K HfO2 gate dielectrics are fabricated on n-germanium substrates by sputtering Hf on Ge and following by a furnace annealing. The impacts of sputtering ambient, annealing ambient and annealing temperature on the electrical properties of high-K HfO2 gate dielectrics on germanium substrates are investigated. Experimental results indicate that high-K HfO2 gate dielectrics on germanium substrates with good electrical characteristics are obtained, the electrical properties of high-K HfO2 gate dielectrics is strongly correlated with sputtering ambient, annealing ambient and annealing temperature.
文摘Two optical methods, namely crystal facet reflection and etching pits reflection, were used to orient and high-purity germanium crystals. The X-ray diffraction patterns of three slices that were cut from the oriented and crystals were measured by X-ray diffraction. The experimental errors of crystal facet reflection method and etching pits reflection method are in the range of 0.05° - 0.12°. The crystal facet reflection method and etching pits reflection method are extremely simple and cheap and their accuracies are acceptable for characterizing high purity detector-grade germanium crystals.
基金supported by Visiting Scholar Foundation of Key LaboratoryMinistry of Education,China and Initiative Foundation of Scaence and Technology,Beijing
文摘This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5-20 MeV at fluence ranging from 1×109 to 7×1013 cm-2, and then their electric parameters were measured at AM0. It was shown that the Isc, Voc and Pmax decrease as the proton energy increasing, and the degradation is relative to proton irradiation-induced defect with a level of Ec-0.41 eV in irradiated GaAs/Ge cells.
文摘Purification is a primary application of zone melting, in which the improvement of efficiency, production yield and minimum achievable impurity level are always the research focus due to the increasing demand for high purity metals. This paper has systematically outlined the whole development of related research on zone refining of metals including basic theories, variants of zone refining, parametric optimization, numerical models, and high purity analytical methods. The collection of this information could be of good value to improve the refining efficiency and the production of high purity metals by zone refining.
文摘1 .Introduetion Germanium differs from other metals for its semieonducting ProPerties.The first major stud-ies of solid state Physies in utilizing semieondueting ProPerties were due Primarily to the availabili-ty of high Purity germanium.P一tyPe germanium erystal ean be obtained by doPing high Puritygermanium with 3 valenee element as indium,gallium or boron.Similarlyn一tyPe germanium erys-tal can be doPed with 5 valenee element
文摘Strain-relaxed SiGe is an attractive material for use as a substrate of strained Si, in which carrier mobility is higher than that of bulk Si. The concept of this study is the use of porous Si as a sponge like substrate so that a SiGe lattice can relax without introducing dislocations. We produced porous Si specimens by electrochemical anodization and annealed them under a H2 atmosphere. Then, SiGe thin films were grown by gas-source molecular beam epitaxy. We observed the microstructure of the specimens using transmission electron microscopy. The result showed that we succeeded in producing a single-crys- tal continuous Si0.73Ge0.27 film with a 10% relaxation ratio and a low dislocation density on porous Si.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52102335,11704220,11804184,11974208,and 11804185)the Shandong Provincial Natural Science Foundation,China (Grant Nos.ZR2021MA050,ZR2017BA020,ZR2018PA010,ZR2019MA054,and ZR2017BA012)。
文摘We have systematically investigated the structures of Sr-Ge system under pressures up to 200 GPa and found six stable stoichiometric structures,they being Sr_(3)Ge,Sr_(2)Ge,SrGe,SrGe_(2),SrGe_(3),and SrGe_(4).We demonstrate the interesting structure evolution behaviors in Sr-Ge system with the increase of germanium content,Ge atoms arranging into isolated anions in Sr_(3)Ge,chains in Sr_(2) Ge,square units in SrGe,trigonal units and hexahedrons in SrGe_(2),cages in SrGe_(3),hexagons and Geg rings in SrGe_(4).The structural diversity produces various manifestations of electronic structures,which is of benefit to electrical transportation.Among them,these novel phases with metallic structures show superconductivity(maximum T_(c)~8.94 K for Pmmn Sr_(3)Ge).Notably,the n-type semiconducting Pnma SrGe_(2) structure exhibits high Seebeck coefficient and excellent electrical conductivity along the y direction,leading to a high ZT value up to 1.55 at 500 K,which can be potential candidates as high-performance thermoelectrics.Our results will enable the development of fundamental science in condensed matter physics and potential applications in novel electronics or thermoelectric materials.
文摘Many scientific domains use gamma-ray spectrometry, but non-destructive gamma scanning and gamma emission tomography of radioactive fuel in particular. In the experimental setting, a collimator is frequently employed to focus on a particular location of interest in the fuel. Predictive models for the transmitted gamma-ray intensity through the collimator are required for both the optimization of instrument design and the planning of measurement campaigns. Gamma-ray transport accuracy is frequently predicted using Monte Carlo radiation transport methods, but using these tools in low-efficiency experimental setups is challenging due to the lengthy computation times needed. This study focused on the full-energy peak intensity that was transmitted through several collimator designs, including rectangle and cylinder. The rate of photons arriving at a detector on the other side of the collimator was calculated for anisotropic source of SNM (U<sub>3</sub>O<sub>8</sub>). Some geometrical assumptions that depended on the source-to-collimator distance and collimator dimensions (length, radius or length, height, and width) were applied to achieve precise findings.