本文对高重频窄脉宽多波长激光器的可靠性进行了分析及验证,建立了高重频窄脉宽多波长激光器的框图法模型。在初始设计阶段开展激光器的可靠性分析,定量计算了激光器各单元的可靠性结果,包括失效率λ和平均无故障工作时间(Mean Time Bet...本文对高重频窄脉宽多波长激光器的可靠性进行了分析及验证,建立了高重频窄脉宽多波长激光器的框图法模型。在初始设计阶段开展激光器的可靠性分析,定量计算了激光器各单元的可靠性结果,包括失效率λ和平均无故障工作时间(Mean Time Between Failure,MTBF),预计激光器整机的无故障工作时间为1798.8 h。为满足激光器的设计指标要求,通过选用高品质晶体、半导体激光器的Ⅰ级降额设计和电源控制的冗余设计,实现激光器的可靠性优化。经优化设计后,激光器整机的无故障工作时间达2260.9 h。搭建激光器整机对可靠性优化设计结果进行验证,验证结果表明:激光器无故障工作时间可达2400 h。展开更多
In the present paper we conduct a theoretical study of the thermal accumulation effect of a typical bipolar transistor caused by high power pulsed microwaves(HPMs),and investigate the thermal accumulation effect as ...In the present paper we conduct a theoretical study of the thermal accumulation effect of a typical bipolar transistor caused by high power pulsed microwaves(HPMs),and investigate the thermal accumulation effect as a function of pulse repetition frequency(PRF) and duty cycle.A study of the damage mechanism of the device is carried out from the variation analysis of the distribution of the electric field and the current density.The result shows that the accumulation temperature increases with PRF increasing and the threshold for the transistor is about 2 kHz.The response of the peak temperature induced by the injected single pulses indicates that the falling time is much longer than the rising time.Adopting the fitting method,the relationship between the peak temperature and the time during the rising edge and that between the peak temperature and the time during the falling edge are obtained.Moreover,the accumulation temperature decreases with duty cycle increasing for a certain mean power.展开更多
The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrie...The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrier injection and HPM-induced latch-up are proposed. Analysis on upset characteristic under pulsed wave reveals increasing susceptibility under shorter-width pulsed wave which satisfies experimental data, and the dependence of upset threshold on pulse repetitive frequency(PRF) is believed to be due to the accumulation of excess carriers. Moreover, the trend that HPMinduced latch-up is more likely to happen in shallow-well device is proposed.Finally, the process of self-recovery which is ever-reported in experiment with its correlation with supply voltage and power level is elaborated, and the conclusions are consistent with reported experimental results.展开更多
基金National Nature Science Foundation of China(Grant No.60972159,61032001)Aviation Science Foundation(Grant No.20085184003)Special Foundation Program for Mountain Tai Scholars of China
文摘本文对高重频窄脉宽多波长激光器的可靠性进行了分析及验证,建立了高重频窄脉宽多波长激光器的框图法模型。在初始设计阶段开展激光器的可靠性分析,定量计算了激光器各单元的可靠性结果,包括失效率λ和平均无故障工作时间(Mean Time Between Failure,MTBF),预计激光器整机的无故障工作时间为1798.8 h。为满足激光器的设计指标要求,通过选用高品质晶体、半导体激光器的Ⅰ级降额设计和电源控制的冗余设计,实现激光器的可靠性优化。经优化设计后,激光器整机的无故障工作时间达2260.9 h。搭建激光器整机对可靠性优化设计结果进行验证,验证结果表明:激光器无故障工作时间可达2400 h。
基金Project supported by the National Natural Science Foundation of China (Grant No. 60776034)
文摘In the present paper we conduct a theoretical study of the thermal accumulation effect of a typical bipolar transistor caused by high power pulsed microwaves(HPMs),and investigate the thermal accumulation effect as a function of pulse repetition frequency(PRF) and duty cycle.A study of the damage mechanism of the device is carried out from the variation analysis of the distribution of the electric field and the current density.The result shows that the accumulation temperature increases with PRF increasing and the threshold for the transistor is about 2 kHz.The response of the peak temperature induced by the injected single pulses indicates that the falling time is much longer than the rising time.Adopting the fitting method,the relationship between the peak temperature and the time during the rising edge and that between the peak temperature and the time during the falling edge are obtained.Moreover,the accumulation temperature decreases with duty cycle increasing for a certain mean power.
基金Project supported by the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrier injection and HPM-induced latch-up are proposed. Analysis on upset characteristic under pulsed wave reveals increasing susceptibility under shorter-width pulsed wave which satisfies experimental data, and the dependence of upset threshold on pulse repetitive frequency(PRF) is believed to be due to the accumulation of excess carriers. Moreover, the trend that HPMinduced latch-up is more likely to happen in shallow-well device is proposed.Finally, the process of self-recovery which is ever-reported in experiment with its correlation with supply voltage and power level is elaborated, and the conclusions are consistent with reported experimental results.