A series of CeO_(2)-TiO_(2)mixed oxides supports with various Ce/Ti molar ratio were synthesized by modified coprecipitation method. The corresponding Pt loaded(0.5 wt% Pt) catalysts were prepared by electronless depo...A series of CeO_(2)-TiO_(2)mixed oxides supports with various Ce/Ti molar ratio were synthesized by modified coprecipitation method. The corresponding Pt loaded(0.5 wt% Pt) catalysts were prepared by electronless deposition method and evaluated for the deep oxidation of n-hexane as a model VOCs. The results show that the CeO_(2)and TiOxnanoparticles can highly disperse into each other and form Ce_(2)Ti_(2)O_(7)solid solution with appropriate Ce/Ti molar ratio, which significantly improves their redox ability by enhancing the interaction between CeO_(2)and TiO_(x). The dispersibility of Pt species can also be adjusted by altering the Ce/Ti molar ratio, and Pt/CeTi-2/1 catalyst with Ce/Ti molar ratio of 2:1 exhibits the best Pt dispersibility that Pt species mainly exist as Pt single atoms. The high dispersion of Pt species in the Pt/CeO_(2)-TiO_(2)catalysts would promote the catalytic activity of VOCs oxidation with low T90% values(1000 ppm, GHSV = 15,000 h^(-1)), such as for n-hexane degradation with T90% of 139℃. The characterizations reveal that the superior activity is mainly related to possessing the more Pt2+species,adsorbed oxygen species and higher low-temperature reducibility owing to the strong interaction between highly dispersed Pt species and CeO_(2)-TiO_(2)as well as the promoted migration of lattice oxygen by the formation of more Ce_(2)Ti_(2)O_(7)species. Furthermore, the Pt/CeTi-2/1 catalyst also exhibits excellent stability for chlorinated and other non-chlorinated VOCs oxidation, making it very promising for real application under various operating conditions.展开更多
High purity anatase nano-TiO2 powders with high photocatalytic activity were prepared by a hydrothermal synthesis method. X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), ultraviol...High purity anatase nano-TiO2 powders with high photocatalytic activity were prepared by a hydrothermal synthesis method. X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), ultraviolet-visible (UV-Vis) light absorption spectrum and photoluminescence (PL) spectrum were adopted to characterize the catalyst. Effects of temperature, time and sol concentration of hydrothermal synthesis on particle size and phases were investigated. Photocatalytic activities in the degradation of Rhodamine B Dye were studied. The experimental results indicated that photocatalytic activity of the nano-TiO2 powers was much higher than that of P25 (Degussa).展开更多
A new method for the determination of vanadium in high purity Y2O3 by fluorination assisted electrothermal vaporization-ICP-AES is presented in this paper. After the sample dissolved,the vanadium in the sample solutio...A new method for the determination of vanadium in high purity Y2O3 by fluorination assisted electrothermal vaporization-ICP-AES is presented in this paper. After the sample dissolved,the vanadium in the sample solution was coprecipitated with Bi(PDC)_3 at pH 3. 7. The precipitates were made into a slurry with the fluorinating agent PTFE and directly introduced into the graphite furnace for determination. The analytical results were obtained by aqueous calibration curve method. The detection limit of the method is 1. 1 ng/mL, the RSD is 2. 8% (n=10,1 5 ng/mL vanadium solution), and the recovery of vanadium added to real sample is more than 96%.展开更多
In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepare...In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepared.The effects of structural properties,textural properties,oxygen vacancies,Ce^(3+),surface adsorbed oxygen species,reduction properties and desorption properties of oxygen species on the activity were analyzed by various characterization methods.The results of the activity test show that the addition of manganese is beneficial to enhancement of the activity,while the addition of yttrium increases the amount of reactive oxygen species,but decreases the activity.After aging at 700℃,the activity of the CeMn catalyst decreases most sharply,while the catalytic activity of the CeY catalyst can be maintained to a certain extent.Interestingly,the addition of yttrium and manganese at the same time can stabilize the activity.The fundamental reason is that yttrium and manganese move to the surface of the solid solution after aging,which increases the reduction performance of the catalyst,thus contributing to the increase of activity.Although the activity of CeYMn catalyst decreases after aging at 800℃,it is still higher than that of other catalysts aged at 700℃.展开更多
The CeO_2-ZrO_2 solid solutions were prepared by a reverse microemulsion method. The effect of preparation parameters on the surface area and crystalline form of the solid solutions were studied by the BET surface are...The CeO_2-ZrO_2 solid solutions were prepared by a reverse microemulsion method. The effect of preparation parameters on the surface area and crystalline form of the solid solutions were studied by the BET surface area and XRD analysis. The studies indicate that the separation of the microemulsion phase during the preparation procedure can decrease the specific surface area of sample, adding hydrogen peroxide in the matrix solution can increase the specific surface area and stability of sample. The surface area of sample calcined at 550 ℃ for 5 h is 149 m^2·g^(-1), and that calcined at 900 ℃ for 6 h is 88 m^2·g^(-1). The sample with tetragonal symmetry Ce_(0.5)Zr_(0.5)O_2 phase has a higher stability.展开更多
A new method for the determination of trace non-rare earth elements in high purity rare earth oxides by ICP-AES with preconcentration on an active carbon-silica gel microcolumn in a flow injection system is described ...A new method for the determination of trace non-rare earth elements in high purity rare earth oxides by ICP-AES with preconcentration on an active carbon-silica gel microcolumn in a flow injection system is described in this paper. Experimental parameters such as pH, flow rate,reagent concentration,length of reaction coil,eluent acidity,etc. were optimized. In the buffer solution of NH3. H2O/NH4Cl at pH 4. 6,Al,Cr,Cu,Fe, Pb, V and Zn can be preconcentrated and then eluted with 4. 5 mol/L nitric acid utilizing stop-flow technique. The enrichment factors were in range of 8. 1 ̄12. 6 with detection limits of μg/m level ,and the RSD with metals at μg/g level were 2. 3 ̄5. 0% (n= 7). The method proposed can reduce the matrix interference effectively , and has been applied to the determination of non-rare earth metals atμg/g level in high purity Eu2O3 with satisfactory results.展开更多
A new method for the determination of trace non-rare earth elements (NREEs) impurities in high-purity lanthanum oxide by HPLC combined with ICP-AES is proposed. The chromatographic retention behaviors of matrix (La) a...A new method for the determination of trace non-rare earth elements (NREEs) impurities in high-purity lanthanum oxide by HPLC combined with ICP-AES is proposed. The chromatographic retention behaviors of matrix (La) and NREEs were studied using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (P507) chelating resin as the stationary phase and dilute nitric acid as the mobile phase. It is found that the use of pH 1.7 nitric acid enables effective elution of NREEs from HPLC column, but the lanthanum remains on the column. The experimental results show that a favorable separation between matrix lanthanum and NREEs can be obtained within 15 min. The method proposed is applied to the determination of 8 NREEs impurities in high-purity La2O3. The recoveries of 8 NREEs are in the range of 90 % similar to 110 %.展开更多
Understanding the influence of sulfates over catalysts for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR)is crucial due to the universal presence of SO_(2)in exhaust gas.Depending on the degree of sulfati...Understanding the influence of sulfates over catalysts for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR)is crucial due to the universal presence of SO_(2)in exhaust gas.Depending on the degree of sulfation,there mainly exist surface and bulk sulfates and NH_(3)-SCR activity is generally considered to suffer more from bulk sulfates.Herein,the unique function of bulk sulfates over Ce O_(2)in promoting hightemperature SCR reaction is revealed.Notably,compared with CeO_(2)dominated with surface sulfates(S-CeO_(2)-4h)and commercial V_2O_5-WO_(3)/TiO_(2),CeO_(2)with bulk sulfates(S-Ce O_(2)-72h)exhibits admirable NO conversion at the temperature range of 400-550℃.Bulk sulfates provide more Br?nsted acid sites with stronger strength for NH_(3)adsorption.Moreover,the oxidation ability of Ce O_(2)is significantly inhibited due to electron-withdrawing effect from bulk sulfates,which alleviates NH_(3)oxidation at high temperatures.More NH_(3)adsorption with high stability and limited NH_(3)oxidation capacity ensure the excellent catalytic performance for S-CeO_(2)-72h in high-temperature denitration.This work provides new insight of bulk sulfates in promoting SCR activity and open a new avenue to design de NO_xcatalysts employed at high temperatures.展开更多
High-performance gas sensing materials operated at room temperature(RT) are attractive for a variety of real-time gas monitoring applications,especially with the excellent durability and flexibility of wearable sensor...High-performance gas sensing materials operated at room temperature(RT) are attractive for a variety of real-time gas monitoring applications,especially with the excellent durability and flexibility of wearable sensor.The constructing heterostructure is one of the significant approaches in design strategies of sensing materials.This heterostructure effectively increases the active site for improving sensing performance and decreasing energy consumption.Herein,the heterostructure of Au nanoparticles modified CeO_(2)@carbon-quantum-dots(Au/CeO_(2)@CQDs) with a three-dimensional(3D) scaffold structure are successfully synthesized by an effective strategy,which can apply for preparing flexible gas sensor.The gas sensing properties of Au/CeO_(2)@CQDs based on flexible substrate are obtained under long-term repeated NO_(2) exposure at RT.Meanwhile,the long-term mechanical stability of this gas sensing device is also detected after different bending cycles.The Au/CeO_(2)@CQDs based on flexible substrate sensor exhibits excellent performance,including higher sensitivity(47.2),faster response(18 s)and recovery time(22 s) as well as longer-term stability than performance of pure materials.The obtained sensor also reveals outstanding mechanical flexibility,which is only a tiny response fluctuation(8.1%) after 500 bending/relaxing cycles.Therefore,our study demonstrates the enormous potential of this sensing materials for hazardous gas monitoring in future portable and wearable sensing platform.展开更多
基金supported by a grant from the National Key Research and Development Program of China (2016YFC0204300)the National Nature Science Foundation of China (21477109)。
文摘A series of CeO_(2)-TiO_(2)mixed oxides supports with various Ce/Ti molar ratio were synthesized by modified coprecipitation method. The corresponding Pt loaded(0.5 wt% Pt) catalysts were prepared by electronless deposition method and evaluated for the deep oxidation of n-hexane as a model VOCs. The results show that the CeO_(2)and TiOxnanoparticles can highly disperse into each other and form Ce_(2)Ti_(2)O_(7)solid solution with appropriate Ce/Ti molar ratio, which significantly improves their redox ability by enhancing the interaction between CeO_(2)and TiO_(x). The dispersibility of Pt species can also be adjusted by altering the Ce/Ti molar ratio, and Pt/CeTi-2/1 catalyst with Ce/Ti molar ratio of 2:1 exhibits the best Pt dispersibility that Pt species mainly exist as Pt single atoms. The high dispersion of Pt species in the Pt/CeO_(2)-TiO_(2)catalysts would promote the catalytic activity of VOCs oxidation with low T90% values(1000 ppm, GHSV = 15,000 h^(-1)), such as for n-hexane degradation with T90% of 139℃. The characterizations reveal that the superior activity is mainly related to possessing the more Pt2+species,adsorbed oxygen species and higher low-temperature reducibility owing to the strong interaction between highly dispersed Pt species and CeO_(2)-TiO_(2)as well as the promoted migration of lattice oxygen by the formation of more Ce_(2)Ti_(2)O_(7)species. Furthermore, the Pt/CeTi-2/1 catalyst also exhibits excellent stability for chlorinated and other non-chlorinated VOCs oxidation, making it very promising for real application under various operating conditions.
基金Funded by the Academic Leader Program of Wuhan City(201150530146)the Foundamental Research Funds for the Central Universities(2010-11-020)
文摘High purity anatase nano-TiO2 powders with high photocatalytic activity were prepared by a hydrothermal synthesis method. X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), ultraviolet-visible (UV-Vis) light absorption spectrum and photoluminescence (PL) spectrum were adopted to characterize the catalyst. Effects of temperature, time and sol concentration of hydrothermal synthesis on particle size and phases were investigated. Photocatalytic activities in the degradation of Rhodamine B Dye were studied. The experimental results indicated that photocatalytic activity of the nano-TiO2 powers was much higher than that of P25 (Degussa).
文摘A new method for the determination of vanadium in high purity Y2O3 by fluorination assisted electrothermal vaporization-ICP-AES is presented in this paper. After the sample dissolved,the vanadium in the sample solution was coprecipitated with Bi(PDC)_3 at pH 3. 7. The precipitates were made into a slurry with the fluorinating agent PTFE and directly introduced into the graphite furnace for determination. The analytical results were obtained by aqueous calibration curve method. The detection limit of the method is 1. 1 ng/mL, the RSD is 2. 8% (n=10,1 5 ng/mL vanadium solution), and the recovery of vanadium added to real sample is more than 96%.
基金Project supported by the National Natural Science Foundation of China(21962021)the Yunnan Fundamental Research Projects(202001AU070121)+1 种基金the National Natural Science Foundation of China(51908091)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities'Association(202101BA070001-084)。
文摘In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepared.The effects of structural properties,textural properties,oxygen vacancies,Ce^(3+),surface adsorbed oxygen species,reduction properties and desorption properties of oxygen species on the activity were analyzed by various characterization methods.The results of the activity test show that the addition of manganese is beneficial to enhancement of the activity,while the addition of yttrium increases the amount of reactive oxygen species,but decreases the activity.After aging at 700℃,the activity of the CeMn catalyst decreases most sharply,while the catalytic activity of the CeY catalyst can be maintained to a certain extent.Interestingly,the addition of yttrium and manganese at the same time can stabilize the activity.The fundamental reason is that yttrium and manganese move to the surface of the solid solution after aging,which increases the reduction performance of the catalyst,thus contributing to the increase of activity.Although the activity of CeYMn catalyst decreases after aging at 800℃,it is still higher than that of other catalysts aged at 700℃.
文摘The CeO_2-ZrO_2 solid solutions were prepared by a reverse microemulsion method. The effect of preparation parameters on the surface area and crystalline form of the solid solutions were studied by the BET surface area and XRD analysis. The studies indicate that the separation of the microemulsion phase during the preparation procedure can decrease the specific surface area of sample, adding hydrogen peroxide in the matrix solution can increase the specific surface area and stability of sample. The surface area of sample calcined at 550 ℃ for 5 h is 149 m^2·g^(-1), and that calcined at 900 ℃ for 6 h is 88 m^2·g^(-1). The sample with tetragonal symmetry Ce_(0.5)Zr_(0.5)O_2 phase has a higher stability.
文摘A new method for the determination of trace non-rare earth elements in high purity rare earth oxides by ICP-AES with preconcentration on an active carbon-silica gel microcolumn in a flow injection system is described in this paper. Experimental parameters such as pH, flow rate,reagent concentration,length of reaction coil,eluent acidity,etc. were optimized. In the buffer solution of NH3. H2O/NH4Cl at pH 4. 6,Al,Cr,Cu,Fe, Pb, V and Zn can be preconcentrated and then eluted with 4. 5 mol/L nitric acid utilizing stop-flow technique. The enrichment factors were in range of 8. 1 ̄12. 6 with detection limits of μg/m level ,and the RSD with metals at μg/g level were 2. 3 ̄5. 0% (n= 7). The method proposed can reduce the matrix interference effectively , and has been applied to the determination of non-rare earth metals atμg/g level in high purity Eu2O3 with satisfactory results.
文摘A new method for the determination of trace non-rare earth elements (NREEs) impurities in high-purity lanthanum oxide by HPLC combined with ICP-AES is proposed. The chromatographic retention behaviors of matrix (La) and NREEs were studied using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (P507) chelating resin as the stationary phase and dilute nitric acid as the mobile phase. It is found that the use of pH 1.7 nitric acid enables effective elution of NREEs from HPLC column, but the lanthanum remains on the column. The experimental results show that a favorable separation between matrix lanthanum and NREEs can be obtained within 15 min. The method proposed is applied to the determination of 8 NREEs impurities in high-purity La2O3. The recoveries of 8 NREEs are in the range of 90 % similar to 110 %.
基金The financial supports from the National Natural Science Foundation of China(Nos.21976081,21972062)Major Scientific and Technological Project of Bingtuan(No.2018AA002),are greatly acknowledged。
文摘Understanding the influence of sulfates over catalysts for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR)is crucial due to the universal presence of SO_(2)in exhaust gas.Depending on the degree of sulfation,there mainly exist surface and bulk sulfates and NH_(3)-SCR activity is generally considered to suffer more from bulk sulfates.Herein,the unique function of bulk sulfates over Ce O_(2)in promoting hightemperature SCR reaction is revealed.Notably,compared with CeO_(2)dominated with surface sulfates(S-CeO_(2)-4h)and commercial V_2O_5-WO_(3)/TiO_(2),CeO_(2)with bulk sulfates(S-Ce O_(2)-72h)exhibits admirable NO conversion at the temperature range of 400-550℃.Bulk sulfates provide more Br?nsted acid sites with stronger strength for NH_(3)adsorption.Moreover,the oxidation ability of Ce O_(2)is significantly inhibited due to electron-withdrawing effect from bulk sulfates,which alleviates NH_(3)oxidation at high temperatures.More NH_(3)adsorption with high stability and limited NH_(3)oxidation capacity ensure the excellent catalytic performance for S-CeO_(2)-72h in high-temperature denitration.This work provides new insight of bulk sulfates in promoting SCR activity and open a new avenue to design de NO_xcatalysts employed at high temperatures.
基金financially supported by the Natural Science Foundation of Shandong Province (Nos. ZR2021QB136 and ZR2022MH091)the Innovation and Entrepreneurship Training Program for Undergraduates of Shandong Province (No.S202110439100)+2 种基金Tai'an Science and Technology Innovation Development Project (No.2021GX068)the Academic Promotion Program of Shandong First Medical University (No. 2019QL008)the Chinese Academy of Sciences。
文摘High-performance gas sensing materials operated at room temperature(RT) are attractive for a variety of real-time gas monitoring applications,especially with the excellent durability and flexibility of wearable sensor.The constructing heterostructure is one of the significant approaches in design strategies of sensing materials.This heterostructure effectively increases the active site for improving sensing performance and decreasing energy consumption.Herein,the heterostructure of Au nanoparticles modified CeO_(2)@carbon-quantum-dots(Au/CeO_(2)@CQDs) with a three-dimensional(3D) scaffold structure are successfully synthesized by an effective strategy,which can apply for preparing flexible gas sensor.The gas sensing properties of Au/CeO_(2)@CQDs based on flexible substrate are obtained under long-term repeated NO_(2) exposure at RT.Meanwhile,the long-term mechanical stability of this gas sensing device is also detected after different bending cycles.The Au/CeO_(2)@CQDs based on flexible substrate sensor exhibits excellent performance,including higher sensitivity(47.2),faster response(18 s)and recovery time(22 s) as well as longer-term stability than performance of pure materials.The obtained sensor also reveals outstanding mechanical flexibility,which is only a tiny response fluctuation(8.1%) after 500 bending/relaxing cycles.Therefore,our study demonstrates the enormous potential of this sensing materials for hazardous gas monitoring in future portable and wearable sensing platform.