期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Development of miniaturized SAF-LIBS with high repetition rate acousto-optic gating for quantitative analysis
1
作者 陈斐 侯佳佳 +10 位作者 王刚 赵洋 李佳轩 王树青 张雷 张婉飞 马晓飞 刘珍荣 罗学彬 尹王保 贾锁堂 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期157-164,共8页
The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically... The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability. 展开更多
关键词 self-absorption-free LIBS(SAF-LIBS) self-absorption effect optically thin plasma high repetition rate laser acousto-optic gating
下载PDF
Erbium-Doped Zirconia-Alumina Silica Glass-Based Fiber as a Saturable Absorber for High Repetition Rate Q-Switched All-Fiber Laser Generation 被引量:1
2
作者 P. Harshavardhan Reddy N. A. A. Kadir +5 位作者 M. C. Paul S, Das A. Dhar E. I. Ismail A. A. Latiff S. W. Harun 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期63-66,共4页
We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into... We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into a ring EDFL cavity, a stable Q-switching pulse train operating at 1565?nm wavelength is successfully obtained. The repetition rate is tunable from 33.97?kHz to 71.23?kHz by increasing the pump power from the threshold of 26?mW to the maximum of 74?mW. The highest pulse energy of 26.67?nJ is obtained at the maximum pump power. 展开更多
关键词 EDF Zr Erbium-Doped Zirconia-Alumina Silica Glass-Based Fiber as a Saturable Absorber for high repetition rate Q-Switched All-Fiber laser Generation kHz AS
下载PDF
P3: An installation for high-energy density plasma physics and ultra-high intensity laserematter interaction at ELI-Beamlines 被引量:10
3
作者 S.Weber S.Bechet +37 位作者 S.Borneis L.Brabec M.Bucka E.Chacon-Golcher M.Ciappina M.DeMarco A.Fajstavr K.Falk E.-R.Garcia J.Grosz Y.-J.Gu J.-C.Hernandez M.Holec P.Janecka M.Jantac M.Jirka H.Kadlecova D.Khikhlukha O.Klimo G.Korn D.Kramer D.Kumar T.Lastovicka P.Lutoslawski L.Morejon V.Olsovcova M.Rajdl O.Renner B.Rus S.Singh M.Smid M.Sokol R.Versaci R.Vrana M.Vranic J.Vyskocil A.Wolf Q.Yu 《Matter and Radiation at Extremes》 SCIE EI CAS 2017年第4期149-176,共28页
ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensit... ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics. 展开更多
关键词 high-energy-density-physics Ultra-high-intensity Warm dense matter Laboratory astrophysics high repetition rate lasers Plasma optics Inertial confinement fusion lasereplasma interaction Relativistic plasmas
下载PDF
Midinfrared optical frequency comb based on difference frequency generation using high repetition rate Er-doped fiber laser with single wall carbon nanotube film 被引量:3
4
作者 M.Tsuzuki L.Jin +9 位作者 M.Yamanaka V.Sonnenchein H.Tomita A.Sato T.Ohara Y.Sakakibara E.Omoda H.Kataura T.Iguchi N.Nishizawa 《Photonics Research》 SCIE EI 2016年第6期313-317,共5页
We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161... We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized. 展开更多
关键词 high Midinfrared optical frequency comb based on difference frequency generation using high repetition rate Er-doped fiber laser with single wall carbon nanotube film MIR SWNT PCF rate mode DSF EDF length SC DFG
原文传递
Future for inertial-fusion energy in Europe:a roadmap 被引量:2
5
作者 Dimitri Batani Arnaud Colaitis +11 位作者 Fabrizio Consoli Colin N.Danson Leonida Antonio Gizzi Javier Honrubia Thomas Kühl Sebastien Le Pape Jean-Luc Miquel Jose Manuel Perlado R.H.H.Scott Michael Tatarakis Vladimir Tikhonchuk Luca Volpe 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2023年第6期162-192,共31页
The recent achievement of fusion ignition with laser-driven technologies at the National Ignition Facility sets a historic accomplishment in fusion energy research.This accomplishment paves the way for using laser ine... The recent achievement of fusion ignition with laser-driven technologies at the National Ignition Facility sets a historic accomplishment in fusion energy research.This accomplishment paves the way for using laser inertial fusion as a viable approach for future energy production.Europe has a unique opportunity to empower research in this field internationally,and the scientific community is eager to engage in this journey.We propose establishing a European programme on inertial-fusion energy with the mission to demonstrate laser-driven ignition in the direct-drive scheme and to develop pathway technologies for the commercial fusion reactor.The proposed roadmap is based on four complementary axes:(ⅰ)the physics of laser-plasma interaction and burning plasmas;(ⅱ)high-energy high repetition rate laser technology;(ⅲ)fusion reactor technology and materials;and(ⅳ)reinforcement of the laser fusion community by international education and training programmes.We foresee collaboration with universities,research centres and industry and establishing joint activities with the private sector involved in laser fusion.This project aims to stimulate a broad range of high-profile industrial developments in laser,plasma and radiation technologies along with the expected high-level socio-economic impact. 展开更多
关键词 education and training fusion reactor technology high-energy laser high repetition rate laser inertial confinement fusion laser-plasma interaction public-private partnership radiation resistant materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部