This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engi...This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.展开更多
Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution are an issue to be solved urgently for ground observations. One way to solve this problem is to perf...Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution are an issue to be solved urgently for ground observations. One way to solve this problem is to perform a statistical reconstruction of short-exposure speckle images. Combining the rapidity of Shift-Add and the accuracy of speckle masking, this paper proposes a novel reconstruction algorithm-NASIR(Non-rigid Alignment based Solar Image Reconstruction). NASIR reconstructs the phase of the object image at each frequency by building a computational model between geometric distortion and intensity distribution and reconstructs the modulus of the object image on the aligned speckle images by speckle interferometry. We analyzed the performance of NASIR by using the correlation coefficient, power spectrum, and coefficient of variation of intensity profile in processing data obtained by the NVST(1 m New Vacuum Solar Telescope). The reconstruction experiments and analysis results show that the quality of images reconstructed by NASIR is close to speckle masking when the seeing is good, while NASIR has excellent robustness when the seeing condition becomes worse. Furthermore, NASIR reconstructs the entire field of view in parallel in one go, without phase recursion and block-by-block reconstruction, so its computation time is less than half that of speckle masking. Therefore, we consider NASIR is a robust and highquality fast reconstruction method that can serve as an effective tool for data filtering and quick look.展开更多
Calman filtering method based on wavelet transform has been successfully applied to signal denoising. According to the different application methods and the realization forms of Calman filter, combined with the struct...Calman filtering method based on wavelet transform has been successfully applied to signal denoising. According to the different application methods and the realization forms of Calman filter, combined with the structural analysis of wavelet decomposition, we present kinds of multi-scale filtering methods into the category of the three. The simulation results show that the multi-scale Calman filtering method based on system layer has better performance. Synthetic aperture radar (SAR) images have rich texture information, which can reflect the spatial structure of objects. The texture feature is widely used in SAR image classification and SAR image segmentation. Affected by imaging factors, the direct use of texture features extracted from SAR images is not good enough. In order to avoid the traditional method of filtering followed the texture feature extraction caused by the loss of texture and edge information, this paper presents a texture feature extraction of SAR image, then using Robust PCA method, finally using texture feature clustering method K-means test after treatment with RPCA expression.展开更多
The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the i...The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the image reconstruction for HXMT can be achieved by using the direct demodulation method (DDM). However the original DDM is too computationally expensive for multi-dimensional data with high resolution to be employed for HXMT data. We propose an accelerated direct demodulation method especially adapted for data from HXMT. Simulations are also presented to demonstrate this method.展开更多
The aircraft system has recently gained its reputation as a reliable and efficient tool for sensing and parsing aerial scenes.However,accurate and fast semantic segmentation of highresolution aerial images for remote ...The aircraft system has recently gained its reputation as a reliable and efficient tool for sensing and parsing aerial scenes.However,accurate and fast semantic segmentation of highresolution aerial images for remote sensing applications is still facing three challenges:the requirements for limited processing resources and low-latency operations based on aerial platforms,the balance between high accuracy and real-time efficiency for model performance,and the confusing objects with large intra-class variations and small inter-class differences in high-resolution aerial images.To address these issues,a lightweight and dual-path deep convolutional architecture,namely Aerial Bilateral Segmentation Network(Aerial-Bi Se Net),is proposed to perform realtime segmentation on high-resolution aerial images with favorable accuracy.Specifically,inspired by the receptive field concept in human visual systems,Receptive Field Module(RFM)is proposed to encode rich multi-scale contextual information.Based on channel attention mechanism,two novel modules,called Feature Attention Module(FAM)and Channel Attention based Feature Fusion Module(CAFFM)respectively,are proposed to refine and combine features effectively to boost the model performance.Aerial-Bi Se Net is evaluated on the Potsdam and Vaihingen datasets,where leading performance is reported compared with other state-of-the-art models,in terms of both accuracy and efficiency.展开更多
The application of remote sensing monitoring techniques plays a crucial role in evaluating and governing the vast amount of ecological construction projects in China. However, extracting information of ecological engi...The application of remote sensing monitoring techniques plays a crucial role in evaluating and governing the vast amount of ecological construction projects in China. However, extracting information of ecological engineering target through high-resolution satellite image is arduous due to the unique topography and complicated spatial pattern on the Loess Plateau of China. As a result, enhancing classification accuracy is a huge challenge to high-resolution image processing techniques. Image processing techniques have a definitive effect on image properties and the selection of different parameters may change the final classification accuracy during post-classification processing. The common method of eliminating noise and smoothing image is majority filtering. However, the filter function may modify the original classified image and the final accuracy. The aim of this study is to develop an efficient and accurate post-processing technique for acquiring information of soil and water conservation engineering, on the Loess Plateau of China, using SPOT image with 2.5 rn resolution. We argue that it is vital to optimize satellite image filtering parameters for special areas and purposes, which focus on monitoring ecological construction projects. We want to know how image filtering influences final classified results and which filtering kernel is optimum. The study design used a series of window sizes to filter the original classified image, and then assess the accuracy of each output map and image quality. We measured the relationship between filtering window size and classification accuracy, and optimized the post-processing techniques of SPOT5satellite images. We conclude that (1) smoothing with the majority filter is sensitive to the information accuracy of soil and water conservation engineering, and (2) for SPOT5 2.5 m image, the 5×5 pixel majority filter is most suitable kernel for extracting information of ecological construction sites in the Loess Plateau of China.展开更多
High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffract...High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 × 50 μm^2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32arcsec above about 10keV and 0.36arcsec at 1.24keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed.展开更多
Recent research has demonstrated that on-line video imaging is a very promising technique for monitoring crystallization processes. The bottleneck in applying the technique for real-time closed-loop control is conside...Recent research has demonstrated that on-line video imaging is a very promising technique for monitoring crystallization processes. The bottleneck in applying the technique for real-time closed-loop control is considered as image analysis that needs to be robust, fast and able to handle varied image qualities due to temporal variations of operating conditions such as mixing and solid concentrations. Image analysis at highsolid concentrations turns out to be extremely challenging because crystals tend to overlap or attach to each other and the boundaries between the crystals are usually ambiguous. This paper presents an image segmentation algorithm that can effectively deal with images taken at high-solid concentrations. The method segments crystals attached to each other along the mostly related concave points on the contours of crystal blocks. The detailed procedure is introduced with application to crystallization of L-glutamic acid in a hot-stage reactor.展开更多
This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithm...This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithms. The population of morphological filters is iteratively evaluated according to a statistical performance index corresponding to object extraction ability, and evolves into an optimal structuring element using the evolution principles of genetic search. Experimental results of road extraction from high resolution satellite images are presented to illustrate the merit and feasibility of the proposed method.展开更多
[目的]本研究旨在改善基于深度学习的遥感影像田块语义分割中出现的区域不封闭、边缘不贴合、噪点问题,并进一步修正语义分割的识别错误。[方法]以安徽省阜南县、江苏省淮安市为研究地点,自建了农田田块数据集,引入考虑影像多尺度特征...[目的]本研究旨在改善基于深度学习的遥感影像田块语义分割中出现的区域不封闭、边缘不贴合、噪点问题,并进一步修正语义分割的识别错误。[方法]以安徽省阜南县、江苏省淮安市为研究地点,自建了农田田块数据集,引入考虑影像多尺度特征的尺度分割思想与基于物候学的DESTIN(delineation by fusing spatial and temporal information)分割算法,提出了基于多尺度及DESTIN约束的高分遥感影像农田田块语义分割方法。[结果]多尺度与DESTIN约束下基于深度模型的田块语义分割有效改善模型出现的区域不封闭、边缘不贴合、噪点和块状模糊等问题,一定程度修正了深度模型语义分割的错误识别,IoU指标在2个测试集上分别达到94.08%和90.79%,相较深度模型的遥感影像田块语义分割分别提高1.65%和2.32%,对研究区域的田块提取区域更完整、精度更高。[结论]多尺度及DESTIN约束进一步改善了田块语义分割问题,有助于提高高分遥感影像的田块识别精度。展开更多
文摘This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.
基金sponsored by the National Natural Science Foundation of China (NSFC) under Grant Nos.11873027, U2031140, 12073077, 11833010 and 11973088West Light Foundation of the Chinese Academy of Sciences (Y9XB01A and Y9XB019)。
文摘Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution are an issue to be solved urgently for ground observations. One way to solve this problem is to perform a statistical reconstruction of short-exposure speckle images. Combining the rapidity of Shift-Add and the accuracy of speckle masking, this paper proposes a novel reconstruction algorithm-NASIR(Non-rigid Alignment based Solar Image Reconstruction). NASIR reconstructs the phase of the object image at each frequency by building a computational model between geometric distortion and intensity distribution and reconstructs the modulus of the object image on the aligned speckle images by speckle interferometry. We analyzed the performance of NASIR by using the correlation coefficient, power spectrum, and coefficient of variation of intensity profile in processing data obtained by the NVST(1 m New Vacuum Solar Telescope). The reconstruction experiments and analysis results show that the quality of images reconstructed by NASIR is close to speckle masking when the seeing is good, while NASIR has excellent robustness when the seeing condition becomes worse. Furthermore, NASIR reconstructs the entire field of view in parallel in one go, without phase recursion and block-by-block reconstruction, so its computation time is less than half that of speckle masking. Therefore, we consider NASIR is a robust and highquality fast reconstruction method that can serve as an effective tool for data filtering and quick look.
文摘Calman filtering method based on wavelet transform has been successfully applied to signal denoising. According to the different application methods and the realization forms of Calman filter, combined with the structural analysis of wavelet decomposition, we present kinds of multi-scale filtering methods into the category of the three. The simulation results show that the multi-scale Calman filtering method based on system layer has better performance. Synthetic aperture radar (SAR) images have rich texture information, which can reflect the spatial structure of objects. The texture feature is widely used in SAR image classification and SAR image segmentation. Affected by imaging factors, the direct use of texture features extracted from SAR images is not good enough. In order to avoid the traditional method of filtering followed the texture feature extraction caused by the loss of texture and edge information, this paper presents a texture feature extraction of SAR image, then using Robust PCA method, finally using texture feature clustering method K-means test after treatment with RPCA expression.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173038 and 11103022)the Tsinghua University Initiative Scientific Research Program (Grant No. 20111081102)
文摘The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the image reconstruction for HXMT can be achieved by using the direct demodulation method (DDM). However the original DDM is too computationally expensive for multi-dimensional data with high resolution to be employed for HXMT data. We propose an accelerated direct demodulation method especially adapted for data from HXMT. Simulations are also presented to demonstrate this method.
基金co-supported by the National Natural Science Foundation of China(Nos.U1833117 and 61806015)the National Key Research and Development Program of China(No.2017YFB0503402)。
文摘The aircraft system has recently gained its reputation as a reliable and efficient tool for sensing and parsing aerial scenes.However,accurate and fast semantic segmentation of highresolution aerial images for remote sensing applications is still facing three challenges:the requirements for limited processing resources and low-latency operations based on aerial platforms,the balance between high accuracy and real-time efficiency for model performance,and the confusing objects with large intra-class variations and small inter-class differences in high-resolution aerial images.To address these issues,a lightweight and dual-path deep convolutional architecture,namely Aerial Bilateral Segmentation Network(Aerial-Bi Se Net),is proposed to perform realtime segmentation on high-resolution aerial images with favorable accuracy.Specifically,inspired by the receptive field concept in human visual systems,Receptive Field Module(RFM)is proposed to encode rich multi-scale contextual information.Based on channel attention mechanism,two novel modules,called Feature Attention Module(FAM)and Channel Attention based Feature Fusion Module(CAFFM)respectively,are proposed to refine and combine features effectively to boost the model performance.Aerial-Bi Se Net is evaluated on the Potsdam and Vaihingen datasets,where leading performance is reported compared with other state-of-the-art models,in terms of both accuracy and efficiency.
基金supported by the National Natural Science Foundation of China(Grant No.70325002)the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX3-SW-423).
文摘The application of remote sensing monitoring techniques plays a crucial role in evaluating and governing the vast amount of ecological construction projects in China. However, extracting information of ecological engineering target through high-resolution satellite image is arduous due to the unique topography and complicated spatial pattern on the Loess Plateau of China. As a result, enhancing classification accuracy is a huge challenge to high-resolution image processing techniques. Image processing techniques have a definitive effect on image properties and the selection of different parameters may change the final classification accuracy during post-classification processing. The common method of eliminating noise and smoothing image is majority filtering. However, the filter function may modify the original classified image and the final accuracy. The aim of this study is to develop an efficient and accurate post-processing technique for acquiring information of soil and water conservation engineering, on the Loess Plateau of China, using SPOT image with 2.5 rn resolution. We argue that it is vital to optimize satellite image filtering parameters for special areas and purposes, which focus on monitoring ecological construction projects. We want to know how image filtering influences final classified results and which filtering kernel is optimum. The study design used a series of window sizes to filter the original classified image, and then assess the accuracy of each output map and image quality. We measured the relationship between filtering window size and classification accuracy, and optimized the post-processing techniques of SPOT5satellite images. We conclude that (1) smoothing with the majority filter is sensitive to the information accuracy of soil and water conservation engineering, and (2) for SPOT5 2.5 m image, the 5×5 pixel majority filter is most suitable kernel for extracting information of ecological construction sites in the Loess Plateau of China.
基金Supported by the National Natural Science Foundation of China.
文摘High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 × 50 μm^2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32arcsec above about 10keV and 0.36arcsec at 1.24keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed.
文摘Recent research has demonstrated that on-line video imaging is a very promising technique for monitoring crystallization processes. The bottleneck in applying the technique for real-time closed-loop control is considered as image analysis that needs to be robust, fast and able to handle varied image qualities due to temporal variations of operating conditions such as mixing and solid concentrations. Image analysis at highsolid concentrations turns out to be extremely challenging because crystals tend to overlap or attach to each other and the boundaries between the crystals are usually ambiguous. This paper presents an image segmentation algorithm that can effectively deal with images taken at high-solid concentrations. The method segments crystals attached to each other along the mostly related concave points on the contours of crystal blocks. The detailed procedure is introduced with application to crystallization of L-glutamic acid in a hot-stage reactor.
文摘This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithms. The population of morphological filters is iteratively evaluated according to a statistical performance index corresponding to object extraction ability, and evolves into an optimal structuring element using the evolution principles of genetic search. Experimental results of road extraction from high resolution satellite images are presented to illustrate the merit and feasibility of the proposed method.
文摘[目的]本研究旨在改善基于深度学习的遥感影像田块语义分割中出现的区域不封闭、边缘不贴合、噪点问题,并进一步修正语义分割的识别错误。[方法]以安徽省阜南县、江苏省淮安市为研究地点,自建了农田田块数据集,引入考虑影像多尺度特征的尺度分割思想与基于物候学的DESTIN(delineation by fusing spatial and temporal information)分割算法,提出了基于多尺度及DESTIN约束的高分遥感影像农田田块语义分割方法。[结果]多尺度与DESTIN约束下基于深度模型的田块语义分割有效改善模型出现的区域不封闭、边缘不贴合、噪点和块状模糊等问题,一定程度修正了深度模型语义分割的错误识别,IoU指标在2个测试集上分别达到94.08%和90.79%,相较深度模型的遥感影像田块语义分割分别提高1.65%和2.32%,对研究区域的田块提取区域更完整、精度更高。[结论]多尺度及DESTIN约束进一步改善了田块语义分割问题,有助于提高高分遥感影像的田块识别精度。