This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cant...This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cantilever column specimens of HSC is described and a numerical simulation is presented to verify the adopted FE models. Next, based on the FE model for specimen No.6, numerical simulations for 70 cases, in which different concrete strengths, stirrup ratios and axial load ratios are considered, are presented to explore the effect of these parameters on the behavior of the HSC columns, and to check the rationality of requirements for these columns specified in the China Code for Seismic Design of Buildings (GB 50011- 2001). In addition, three cases with different stirrup strengths are analyzed to investigate their effect on the behavior of HSC columns. Finally, based on the numerical results some conclusions are presented.展开更多
Deformation-induced microstructures of high-Mn austenite steel was investigated by metallography,X-ray diffraction and SEM.The ε-martensite and slip-bands are deformation-in- duced on the{111} planes,and appear as th...Deformation-induced microstructures of high-Mn austenite steel was investigated by metallography,X-ray diffraction and SEM.The ε-martensite and slip-bands are deformation-in- duced on the{111} planes,and appear as thin straight laths with 60~80° alignment difference be- tween them.It was found that ε-martensite and slip bands are kinked at fcc twin boundaries with the kinked angle 35~40°.The bands of equilateral triangle in the microstructure of tensile deformation are presented.展开更多
Ni-based superalloys are largely used in the aerospace industry as critical components for turbine engines due to their excellent mechanical properties and fatigue resistance at high temperatures. A hypothesis to expl...Ni-based superalloys are largely used in the aerospace industry as critical components for turbine engines due to their excellent mechanical properties and fatigue resistance at high temperatures. A hypothesis to explain this atypical characteristic among metals is the presence of a cross-slip mechanism. Previous work on the role of thermal activation on cubic slip has shown strain accommodation in two sets of slip planes, which resembled the activation of {100} cubic slip systems along of the octahedral slip planes {111} in Ni-based superalloys under high strain and temperature, exhibiting a more homogeneous strain distribution and less strain localization. Following those previous literature evaluations of initial conditions that can potentially activate cubic-slip planes and provide the level of accommodation and strain homogenization within the grain, this paper presents some experimental procedures and results of Ni-based superalloy (IN-718) tested at 500°C under operational loading condition, without and after being submitted to an overload and overtemperature. The experiments have shown that a pre-condition of 1% strain at 700°C would increase the fatigue life of the IN-718 at 500°C by four times when compared to pristine tested samples. The present results bring up the potential of improving this material fatigue performance, opening the need to further investigate the microstructure as the precondition is applied.展开更多
Due to their superior combination of heat resistance, high temperature corrosion resistance, toughness and strength, nickel-based superalloys have become of extensive use in the aerospace industry. This research aims ...Due to their superior combination of heat resistance, high temperature corrosion resistance, toughness and strength, nickel-based superalloys have become of extensive use in the aerospace industry. This research aims to explain why the fatigue life of Inconel-718 in preconditioned samples had larger fatigue lives than pristine samples. The hypothesis is that preconditioning at 700°C and 1.0% strain could lead to thermal activation of the {100} cubic slip plane alongside the {111} octahedral slip plane, potentially improving fatigue life. Using SEM and EBSD imaging, the microstructure of Inconel-718 samples were characterized before and after preconditioning. The directions of the slip bands that formed following the preconditioning were determined. The result was that the existence of both the cubic and octahedral slip systems was confirmed, leading to the thermal activation hypothesized. The existence of both slip planes was considered to be the reason behind the improved fatigue life due to better strain accommodation within the microstructure. It is suggested that focuses for future research includes conducting in-situ observation of slip activation and the application of preconditioning as a manufacturing method.展开更多
基金National Nature Science Foundation of China Under Grant No. 50621062
文摘This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cantilever column specimens of HSC is described and a numerical simulation is presented to verify the adopted FE models. Next, based on the FE model for specimen No.6, numerical simulations for 70 cases, in which different concrete strengths, stirrup ratios and axial load ratios are considered, are presented to explore the effect of these parameters on the behavior of the HSC columns, and to check the rationality of requirements for these columns specified in the China Code for Seismic Design of Buildings (GB 50011- 2001). In addition, three cases with different stirrup strengths are analyzed to investigate their effect on the behavior of HSC columns. Finally, based on the numerical results some conclusions are presented.
文摘Deformation-induced microstructures of high-Mn austenite steel was investigated by metallography,X-ray diffraction and SEM.The ε-martensite and slip-bands are deformation-in- duced on the{111} planes,and appear as thin straight laths with 60~80° alignment difference be- tween them.It was found that ε-martensite and slip bands are kinked at fcc twin boundaries with the kinked angle 35~40°.The bands of equilateral triangle in the microstructure of tensile deformation are presented.
文摘Ni-based superalloys are largely used in the aerospace industry as critical components for turbine engines due to their excellent mechanical properties and fatigue resistance at high temperatures. A hypothesis to explain this atypical characteristic among metals is the presence of a cross-slip mechanism. Previous work on the role of thermal activation on cubic slip has shown strain accommodation in two sets of slip planes, which resembled the activation of {100} cubic slip systems along of the octahedral slip planes {111} in Ni-based superalloys under high strain and temperature, exhibiting a more homogeneous strain distribution and less strain localization. Following those previous literature evaluations of initial conditions that can potentially activate cubic-slip planes and provide the level of accommodation and strain homogenization within the grain, this paper presents some experimental procedures and results of Ni-based superalloy (IN-718) tested at 500°C under operational loading condition, without and after being submitted to an overload and overtemperature. The experiments have shown that a pre-condition of 1% strain at 700°C would increase the fatigue life of the IN-718 at 500°C by four times when compared to pristine tested samples. The present results bring up the potential of improving this material fatigue performance, opening the need to further investigate the microstructure as the precondition is applied.
文摘Due to their superior combination of heat resistance, high temperature corrosion resistance, toughness and strength, nickel-based superalloys have become of extensive use in the aerospace industry. This research aims to explain why the fatigue life of Inconel-718 in preconditioned samples had larger fatigue lives than pristine samples. The hypothesis is that preconditioning at 700°C and 1.0% strain could lead to thermal activation of the {100} cubic slip plane alongside the {111} octahedral slip plane, potentially improving fatigue life. Using SEM and EBSD imaging, the microstructure of Inconel-718 samples were characterized before and after preconditioning. The directions of the slip bands that formed following the preconditioning were determined. The result was that the existence of both the cubic and octahedral slip systems was confirmed, leading to the thermal activation hypothesized. The existence of both slip planes was considered to be the reason behind the improved fatigue life due to better strain accommodation within the microstructure. It is suggested that focuses for future research includes conducting in-situ observation of slip activation and the application of preconditioning as a manufacturing method.