On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches i...On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.展开更多
Ultra-high-speed grinding(UHSG)is a significant and powerful machining method in view of the enhanced productivity and precision demands.Previous researches regarding formation mechanisms and crucial technologies are ...Ultra-high-speed grinding(UHSG)is a significant and powerful machining method in view of the enhanced productivity and precision demands.Previous researches regarding formation mechanisms and crucial technologies are comprehensively and thoroughly summarized to highlight state-of-art technology of UHSG.On the basis of the interdependence between process and machine innovations,theoretically,grinding mechanisms in strain hardening,strain rate strengthening,thermal softening,size effect and process characteristics need more in-depth studies to clarify the dominance of UHSG.Technically,CFRP wheel integrating with the brazed bonding has a prominent advantage in bonding strength and grit′s configuration over vitrified bonding,which would be superior in UHSG.Furthermore,external high pressure cooling combining with inner jet cooling methods,accompanied by scraper plates to alleviate the effect of air boundary,are crucial and practical measures for realizing effective cooling in UHSG.Grinding processes,especially those being related to grinding parameters and precise in-process measuring approaches,are also prerequisite for fitting and investigation of UHSG.展开更多
Microdroplets and their dispersion,with a large specific surface area and a short diffusion distance,have been applied in various unit operations and reaction processes.However,it is still a challenge to control the s...Microdroplets and their dispersion,with a large specific surface area and a short diffusion distance,have been applied in various unit operations and reaction processes.However,it is still a challenge to control the size and size distribution of microdroplets,especially for high-throughput generation.In this work,a novel ultra-high speed rotating packed bed(UHS-RPB)was invented,in which rotating foam packing with a speed of 4000-12000 r·min^(-1) provides microfluidic channels to disperse liquid into microdroplets with high throughput.Then generated microdroplets can be directly dispersed into a continuous falling film for obtaining a mixture of microdroplet dispersion.In this UHS-RPB,the effects of rotational speed,liquid initial velocity,liquid viscosity,liquid surface tension and packing pore size on the average size(d_(32))and size distribution of microdroplets were systematically investigated.Results showed that the UHS-RPB could produce microdroplets with a d_(32) of 25-63μm at a liquid flow rate of 1025 L·h^(-1),and the size distribution of the microdroplets accords well with Rosin-Rammler distribution model.In addi-tion,a correlation was established for the prediction of d_(32),and the predicted d_(32) was in good agreement with the experimental data with a deviation within±15%.These results demonstrated that UHS-RPB could be a promising candidate for controllable preparation of uniform microdroplets.展开更多
Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to deve...Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to develop new type CNC camber grinding machine that can grind complex die, and genuinely achieved accurate feed and high efficient grinding, a new type camber grinding machine is put forward, called non-transmission virtual-shaft CNC camber grinding machine. Its feed system is a parallel mechanism that is directly driven by linear step motor. Therefore, traditional transmission types, such as the ball lead-screw mechanisms, the gears, the hydraulic transmission system, etc. are cancelled, and the feed system of new type CNC camber grinding machine can truly possess non-creep, good accuracy retentiveness a wide range of feed-speed change, high kinematical accuracy and positioning precision, etc. In order to realize that the cutting motion is provided with high grinding speed, step-less speed variation, high rotational accuracy, good dynamic performance, and non-transmission, the driving technology of hollow rotor motor is applied to drive the spindle of new type grinding machine,thus leading to the elimination of the transmission parts of cutting motion. The principle structure model of new type camber grinding machine is advanced. The selection, control gist and driving circuit line of the linear step motor are expounded. The main technology characteristics and application advantages of non-transmission virtual-shaft CNC camber grinding machine are introduced.展开更多
High-efficiency abrasive process with CBN grinding wheel is one of the important techniques of advanced manufacture. Combined with raw and finishing machining, it can attain high material removal rate like turning, mi...High-efficiency abrasive process with CBN grinding wheel is one of the important techniques of advanced manufacture. Combined with raw and finishing machining, it can attain high material removal rate like turning, milling and planning. The difficult-to-grinding materials can also be ground by means of this method with high performance. In the present paper, development status and latest progresses on high-efficiency abrasive machining technologies with CBN grinding wheel relate to high speed and super-high speed grinding, quick point-grinding, high efficiency deep-cut grinding, creep feed deep grinding, heavy-duty snagging and abrasive belt grinding were summarized. The efficiency and parameters range of these abrasive machining processes were compared. The key technologies of high efficiency abrasive machining, including grinding wheel, spindle and bearing, grinder, coolant supplying, installation and orientation of wheel and workpiece and safety defended, as well as intelligent monitor and NC grinding were investigated. It is concluded that high efficiency abrasive machining is a promising technology in the future.展开更多
Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed l...Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed laser cladding(HSLC)technology,and places more emphasis on investigating the formation mechanism,phase compositions,and mechanical properties of HSLC-UHTC coatings.Results show that a well-bonded interface between the coating and the tantalum alloy substrate can be formed.The coating is mainly composed of(Zr,Ta)C ceramic solid solution phase with a content of higher than 90% by volume and Ta(W)metal solid solution phase.At a relatively high powder feeding rate,the ZrC ceramic phase appears in the coating while a dense ZrC UHTC top layer with a thickness of up to~50μm is successfully fabricated.As for the mechanical properties of the HSLC coatings,the fracture toughness of the coating decreases with the increase of powder feeding rate.The increase of carbide solid solution phase can significantly improve the high temperature microhardness(552.7±1.8 HV0.5@1000℃).The innovative design of HSLC ZrC-based coatings on refractory alloys accomplishes continuous transitions on microstructure and properties from the substrate to the UHTC top layer,which is a very promising candidate scheme for thermal protection coating.展开更多
A compound process that integrates end electrical discharge (ED) milling and mechanical grinding to machine silicon carbide (SiC) ceramics is developed in this paper. The process employs a turntable with several unifo...A compound process that integrates end electrical discharge (ED) milling and mechanical grinding to machine silicon carbide (SiC) ceramics is developed in this paper. The process employs a turntable with several uniformly-distributed cylindrical copper electrodes and abrasive sticks as the tool, and uses a water-based emulsion as the machining fluid. End electrical discharge milling and mechanical grinding happen alternately and are mutually beneficial, so the process is able to effectively machine a large surface area on SiC ceramic with a good surface quality. The machining principle and characteristics of the technique are introduced. The effects of polarity, pulse duration, pulse interval, open-circuit voltage, discharge current, diamond grit size, emulsion concentration, emulsion flux, milling depth and tool stick number on performance parameters such as the material removal rate, tool wear ratio, and surface roughness have been investigated. In addition, the microstructure of the machined surface under different machining conditions is examined with a scanning electron microscope and an energy dispersive spectrometer. The SiC ceramic was mainly removed by end ED milling during the initial rough machining mode, whereas it is mainly removed by mechanical grinding during the later finer machining mode; moreover, the tool material can transfer to the workpiece surface during the compound process.展开更多
In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the singl...In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.展开更多
基金National Hi-tech Research and Development Program of China(863 Program,No.2008AA04Z116)and Natural Science Foundation of Hunan Province,China.
文摘On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.
基金Supported by the National Natural Science Foundation of China(51235004)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Funding of Jiangsu Innovation Program for Graduate Education(CXZZ13_0154)
文摘Ultra-high-speed grinding(UHSG)is a significant and powerful machining method in view of the enhanced productivity and precision demands.Previous researches regarding formation mechanisms and crucial technologies are comprehensively and thoroughly summarized to highlight state-of-art technology of UHSG.On the basis of the interdependence between process and machine innovations,theoretically,grinding mechanisms in strain hardening,strain rate strengthening,thermal softening,size effect and process characteristics need more in-depth studies to clarify the dominance of UHSG.Technically,CFRP wheel integrating with the brazed bonding has a prominent advantage in bonding strength and grit′s configuration over vitrified bonding,which would be superior in UHSG.Furthermore,external high pressure cooling combining with inner jet cooling methods,accompanied by scraper plates to alleviate the effect of air boundary,are crucial and practical measures for realizing effective cooling in UHSG.Grinding processes,especially those being related to grinding parameters and precise in-process measuring approaches,are also prerequisite for fitting and investigation of UHSG.
基金supported by National Natural Science Foundation of China(21725601)。
文摘Microdroplets and their dispersion,with a large specific surface area and a short diffusion distance,have been applied in various unit operations and reaction processes.However,it is still a challenge to control the size and size distribution of microdroplets,especially for high-throughput generation.In this work,a novel ultra-high speed rotating packed bed(UHS-RPB)was invented,in which rotating foam packing with a speed of 4000-12000 r·min^(-1) provides microfluidic channels to disperse liquid into microdroplets with high throughput.Then generated microdroplets can be directly dispersed into a continuous falling film for obtaining a mixture of microdroplet dispersion.In this UHS-RPB,the effects of rotational speed,liquid initial velocity,liquid viscosity,liquid surface tension and packing pore size on the average size(d_(32))and size distribution of microdroplets were systematically investigated.Results showed that the UHS-RPB could produce microdroplets with a d_(32) of 25-63μm at a liquid flow rate of 1025 L·h^(-1),and the size distribution of the microdroplets accords well with Rosin-Rammler distribution model.In addi-tion,a correlation was established for the prediction of d_(32),and the predicted d_(32) was in good agreement with the experimental data with a deviation within±15%.These results demonstrated that UHS-RPB could be a promising candidate for controllable preparation of uniform microdroplets.
文摘Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to develop new type CNC camber grinding machine that can grind complex die, and genuinely achieved accurate feed and high efficient grinding, a new type camber grinding machine is put forward, called non-transmission virtual-shaft CNC camber grinding machine. Its feed system is a parallel mechanism that is directly driven by linear step motor. Therefore, traditional transmission types, such as the ball lead-screw mechanisms, the gears, the hydraulic transmission system, etc. are cancelled, and the feed system of new type CNC camber grinding machine can truly possess non-creep, good accuracy retentiveness a wide range of feed-speed change, high kinematical accuracy and positioning precision, etc. In order to realize that the cutting motion is provided with high grinding speed, step-less speed variation, high rotational accuracy, good dynamic performance, and non-transmission, the driving technology of hollow rotor motor is applied to drive the spindle of new type grinding machine,thus leading to the elimination of the transmission parts of cutting motion. The principle structure model of new type camber grinding machine is advanced. The selection, control gist and driving circuit line of the linear step motor are expounded. The main technology characteristics and application advantages of non-transmission virtual-shaft CNC camber grinding machine are introduced.
文摘High-efficiency abrasive process with CBN grinding wheel is one of the important techniques of advanced manufacture. Combined with raw and finishing machining, it can attain high material removal rate like turning, milling and planning. The difficult-to-grinding materials can also be ground by means of this method with high performance. In the present paper, development status and latest progresses on high-efficiency abrasive machining technologies with CBN grinding wheel relate to high speed and super-high speed grinding, quick point-grinding, high efficiency deep-cut grinding, creep feed deep grinding, heavy-duty snagging and abrasive belt grinding were summarized. The efficiency and parameters range of these abrasive machining processes were compared. The key technologies of high efficiency abrasive machining, including grinding wheel, spindle and bearing, grinder, coolant supplying, installation and orientation of wheel and workpiece and safety defended, as well as intelligent monitor and NC grinding were investigated. It is concluded that high efficiency abrasive machining is a promising technology in the future.
基金supported by the National Natural Science Foundation of China(Nos.52105233 and 52275366)the Tianjin Science and Technology Plan Project(No.22JCYBJC01590).
文摘Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed laser cladding(HSLC)technology,and places more emphasis on investigating the formation mechanism,phase compositions,and mechanical properties of HSLC-UHTC coatings.Results show that a well-bonded interface between the coating and the tantalum alloy substrate can be formed.The coating is mainly composed of(Zr,Ta)C ceramic solid solution phase with a content of higher than 90% by volume and Ta(W)metal solid solution phase.At a relatively high powder feeding rate,the ZrC ceramic phase appears in the coating while a dense ZrC UHTC top layer with a thickness of up to~50μm is successfully fabricated.As for the mechanical properties of the HSLC coatings,the fracture toughness of the coating decreases with the increase of powder feeding rate.The increase of carbide solid solution phase can significantly improve the high temperature microhardness(552.7±1.8 HV0.5@1000℃).The innovative design of HSLC ZrC-based coatings on refractory alloys accomplishes continuous transitions on microstructure and properties from the substrate to the UHTC top layer,which is a very promising candidate scheme for thermal protection coating.
基金supported by the National Natural Science Foundation of China(50675225)the Scientific Research Personnel Service Project from the Ministry of Science and Technology of China(2009GJC60047)the Independent Innovation Research Project from China University of Petroleum(11CX04031A)
文摘A compound process that integrates end electrical discharge (ED) milling and mechanical grinding to machine silicon carbide (SiC) ceramics is developed in this paper. The process employs a turntable with several uniformly-distributed cylindrical copper electrodes and abrasive sticks as the tool, and uses a water-based emulsion as the machining fluid. End electrical discharge milling and mechanical grinding happen alternately and are mutually beneficial, so the process is able to effectively machine a large surface area on SiC ceramic with a good surface quality. The machining principle and characteristics of the technique are introduced. The effects of polarity, pulse duration, pulse interval, open-circuit voltage, discharge current, diamond grit size, emulsion concentration, emulsion flux, milling depth and tool stick number on performance parameters such as the material removal rate, tool wear ratio, and surface roughness have been investigated. In addition, the microstructure of the machined surface under different machining conditions is examined with a scanning electron microscope and an energy dispersive spectrometer. The SiC ceramic was mainly removed by end ED milling during the initial rough machining mode, whereas it is mainly removed by mechanical grinding during the later finer machining mode; moreover, the tool material can transfer to the workpiece surface during the compound process.
基金the financial support for this work by the National Natural Science Foundation of China (No.51235004 and No.51375235)the Fundamental Research Funds for the Central Universities (No.NE2014103)the Science and Technology Supporting Program of Jiangsu Province (No.BE2013109 and No.BY2014003-008)
文摘In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.