Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The r...Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.展开更多
In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-wa...In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-water heat exchange system is used for cooling the spindle motor.The spindle is supported by Si_4N_3 ceramic ball angular contact bearings. An oil-air lubricator is used to lubricate and cool the spindle bearings.Some special structures are taken for balancing the spindle.展开更多
Adhesion of cutting tool and chip often occurs when machining stainless steels with cemented carbide tools. Wear mechanism of cemented carbide tool in high speed milling of stainless steel 0Cr13Ni4 Mo was studied in t...Adhesion of cutting tool and chip often occurs when machining stainless steels with cemented carbide tools. Wear mechanism of cemented carbide tool in high speed milling of stainless steel 0Cr13Ni4 Mo was studied in this work. Machining tests on high speed milling of 0Cr13Ni4 Mo with a cemented carbide tool are conducted. The cutting force and cutting temperature are measured. The wear pattern is recorded and analyzed by high?speed camera, scanning electron microscope(SEM) and energy dispersive X?ray spectroscopy(EDS). It is found that adhesive wear was the dominant wear pattern causing tool failure. The process and microcosmic mechanism of the tool’s adhesive wear are analyzed and discussed based on the experimental results. It is shown that adhesive wear of the tool occurs due to the wear of coating, the a nity of elements Fe and Co, and the grinding of workpiece materials to the tool material. The process of adhesive wear includes both microcosmic elements di usion and macroscopic cyclic process of adhe?sion, tearing and fracture.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
Based on three kinds of dynamic test of MEMS, a dynamic system for the vibration test of micro machined gyroscope based on high speed photography is introduced. Firstly, the architecture of the system hardware is intr...Based on three kinds of dynamic test of MEMS, a dynamic system for the vibration test of micro machined gyroscope based on high speed photography is introduced. Firstly, the architecture of the system hardware is introduced. Secondly, the image tracking performance is compared by the test using the template matching algorithm, the mean shift algorithm and the SURF algorithm. The vibration curve shows that high speed photograph combined with SURF algorithm is faster, more ac- curate, and more suitable for the vibration test of micro machined gyroscope. After the frequency a- nalysis and related interpolation, more characteristics of micro gyroscope can be obtained.展开更多
Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resultin...Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resulting in irreversible demagnetization of the permanent magnet(PM).To obtain low rotor temperature,two novel rotor structures with low rotor eddy current loss are proposed in this paper.With the output torque and air gap flux density unchanged,the performance of HSPMMs with the two proposed rotor structures are analyzed based on finite element algorithm(FEA),including eddy current loss and temperature.Finally,the appropriate parameters of the proposed rotor structures are selected,and the electromagnetic(EM)performance,rotor stress and temperature are compared with those of the conventional rotor structure.Index Terms-Eddy current loss,finite element algorithm(FEA),electromagnetic(EM)performance,high speed permanent magnet machines(HSPMMs).展开更多
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange...A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.展开更多
In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study,fractured tools which were used in a titanium alloys 5-axis milling process have...In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study,fractured tools which were used in a titanium alloys 5-axis milling process have been observed both in the macro scale using a PG-1000 light microscope and in the micro scale using a Scanning Electron Microscope (SEM) respectively. These observations indicate that most of these tool fractures are the result of tool chipping. Further analysis of each chipping event has shown that beachmarks emanate from points on the cutting edge. This visual evidence indicates that the cutting edge is failing in fatigue due to cyclical mechanical and/or thermal stresses. Initial analyses explaining some of the outlying conditions for this phenomenon are discussed. Future analysis regarding determining the underlying causes of the fatigue phenomenon is then outlined.展开更多
High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due...High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due to the high temperature at the tool-workpiece interface. Tool wear impairs the surface finish and hence the tool life is reduced. That is why an important objective of metal cutting research has been the assessment of tool wear patterns and mechanisms. In this paper, wear performances of PCBN tool, ceramic tool, coated carbide tool and fine-grained carbide tool in high speed face milling were presented when cutting cast iron, 45# tempered carbon steel and 45# hardened carbon steel. Tool wear patterns were examined through a tool-making microscope. The research results showed that tool wear types differed in various matching of materials between cutting tool and workpiece. The dominant wear patterns observed were rake face wear, flank wear, chipping, fracture and breakage. The main wear mechanisms were mechanical friction, adhesion, diffusion and chemical wear promoted by cutting forces and high cutting temperature. Hence, the important considerations of high speed cutting tool materials are high heat-resistance and wear-resistance, chemical stability as well as resistance to failure of coatings. The research results will be great benefit to the design and the selection of tool materials and control of tool wear in high-speed machining processes.展开更多
The essence of oxidation wear machanism of cenmented carbide tool was studied based on thermodynamics. Standard Gibbs free energy of possible reactions in cutting process at different temperature was calculated using ...The essence of oxidation wear machanism of cenmented carbide tool was studied based on thermodynamics. Standard Gibbs free energy of possible reactions in cutting process at different temperature was calculated using substance Gibbs free energy function methods, and the sequence of reaction possibility order was researched as well as characteristics of every reaction. Theoretical calculation shows that WO3, Co3O4, TiO2 and CoWO4 are the main resultants, which are proved with the experiment results.展开更多
The laser melted-resolidified processing on W18Cr4V high speed tool steel has been made us- ing a 1 kW CO_2 continuous wave laser device.The microstructure of the laser melted- resolidified layer has been examined by ...The laser melted-resolidified processing on W18Cr4V high speed tool steel has been made us- ing a 1 kW CO_2 continuous wave laser device.The microstructure of the laser melted- resolidified layer has been examined by optical microscopy and transmission electron microscopy(TEM).It was characteristic of extremely fine dendrite in the laser melted- resolidified layer and δ-ferrite in bulk form in the center of dendrite.The predominant twin martensite and a little dislocation martensite existed in the dendrite.The thin plate-like M_(213)C_6 carbide precipitated coherently on the twin martensites along their twin plane.There were both austenite rich in W,V and Cr and M_6C carbide in the interdendritic regions.展开更多
In order to achieve high speed of tufting machine,the oval gear is used as the transmission mechanism between the main shaft and the slave shaft. And then,mathematical model of tufting machine spindle system is establ...In order to achieve high speed of tufting machine,the oval gear is used as the transmission mechanism between the main shaft and the slave shaft. And then,mathematical model of tufting machine spindle system is established by transfer matrix method.Finally,the dynamic reaction force of the connection and the unbalanced response of the joint between the general tufting machine and the improved spindle system are studied by using Matlab numerical simulation. The analysis results showthat when the spindle speed reaches 1 000 r/min, the dynamic reaction force of the improved spindle system at the joint is far less than that of the general tufting machine,and the unbalanced response is reduced from 0. 22 mm to 0. 10 mm.展开更多
High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high prec...High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented.展开更多
The paper presents the design and technological aspects on the high speed electrical machines which include the mechanical radial and axial strees because of the centrifugal forces. It presents a reverse structure wit...The paper presents the design and technological aspects on the high speed electrical machines which include the mechanical radial and axial strees because of the centrifugal forces. It presents a reverse structure with outlet rotor and inlet stator that have high speed 20.000 rpm-24.000 rpm and power 1 kW for the pecific of the ventilanting centrifugal fan domain. This unconventional type of machine is not still in the phase of specific tests.展开更多
Graphite becomes the prevailing electrode material in electrical discharging machining (EDM)currently.Orthogonal cutting experiments are carried out to study the characteristics of graphite chip formation process.Hi...Graphite becomes the prevailing electrode material in electrical discharging machining (EDM)currently.Orthogonal cutting experiments are carried out to study the characteristics of graphite chip formation process.High speed milling experiments are conducted to study tool wear and cutting forces.The results show that depth of cut has great influence on graphite chip formation.The removal process of graphite in high speed milling is the mutual result of cutting and grinding process. Graphite is prone to cause severe abrasion wear to coated carbide endmills due to its high abrasiveness nature.The major patterns of tool wear are flank wear,rake wear,micro-chipping and breakage. Cutting forces can be reduced by adoption of higher cutting speed,moderate feed per tooth,smaller radial and axial depths of cut,and up cutting.展开更多
The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekl...The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekly. The curve of surface roughness versus honing time showed a rapid improvement initially and thereafter became steady, manifesting a saturation effect. The optimal honing time related to surface roughness was determined to be approximately 20 s. As the surface roughness increased, the critical loads reduced. At an average surface roughness (Ra) of 0.028 p.m, the highest critical loads of TiN and TiAlN coating layers were 98 and 114 N, respectively. Tool performances of uncoated and coated tools were conducted under high speed machining (HSM) of AISI D2 cold-worked die steel (62 HRC). Consequently, the TiAlN coated end-mill using honing treatment showed excellent tool life under HSM conditions.展开更多
To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c...To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.展开更多
To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and a...To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.展开更多
An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is the...An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of R_a 2.4?nm can be achieved.展开更多
High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional ther...High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional thermal resistance and the ability to retain mechanical properties at elevated temperatures of service environment over 700 ℃. However, they are classified as difficult-to-cut materials due to their high shear strength, work hardening tendency, highly abrasive carbide particles in the microstructure, strong tendency to weld and form built-up edge and low thermal conductivity. They have a tendency to maintain their strength at high temperature that is generated during machining. The Inconel 718 workpiece material used in the experiment was in the hot forged and annealed condition. The commercially available inserts (all inserts were made by Kennametal Inc.) were selected for the tests, a PVD TiAlN coated carbide, a CVD/PVD TiN/TiCN/TiN coated carbide and a CVD Al 2O 3/TiC/TiCN coated carbide were used at the cutting speed range about 50~100 m/min. Three kinds Sialon grade inserts with various geometry and cutting angles were used at the cutting speed range from 100 m/min to 300 m/min. For evaluating the inserts machinability when high speed cutting Inconel 718, Taylor Formula within certain cutting speeds, an high speed cutting experiment of tool life was carried out to establish the models of tool life by means of rapid facing turning test. The conclusions drawn from the turning of Inconel 718 with silicon nitride based ceramic; PVD and CVD coated carbide inserts are as follows: Studies on tool wear in high speed machining. The thorough investigations and studies were made on the tool wear form, wear process and wear mechanism in high speed cutting of difficult-to-machine materials with ceramic tools and with coated carbides. The major wear mechanisms of nickel-based alloys are interactions of abrasive wear, adhesion wear, micro-breakout and chipping. Optimization analysis on the application of high speed machining. Based on the experimental results, the optimal cutting parameters were determined for machining of Inconel 718 at high speed. The recommendation of tool inserts for high speed cutting inconel 718 were ceramic inserts of KY2000 with negative rake angle and KY2100 with round type, the PVD coated carbide insert KC7310 was recommended for its lower price.展开更多
文摘Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.
基金This project is supported by National Natural Science Foundation of China(59575063), the Provincial Natural Science Foundation o
文摘In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-water heat exchange system is used for cooling the spindle motor.The spindle is supported by Si_4N_3 ceramic ball angular contact bearings. An oil-air lubricator is used to lubricate and cool the spindle bearings.Some special structures are taken for balancing the spindle.
基金Supported by National Natural Science Foundation of China(Grant No.51375099)Shanghai Municipal Natural Science Foundation of China(Grant No.18ZR1441000)Fundamental Research Funds for the Central Universities
文摘Adhesion of cutting tool and chip often occurs when machining stainless steels with cemented carbide tools. Wear mechanism of cemented carbide tool in high speed milling of stainless steel 0Cr13Ni4 Mo was studied in this work. Machining tests on high speed milling of 0Cr13Ni4 Mo with a cemented carbide tool are conducted. The cutting force and cutting temperature are measured. The wear pattern is recorded and analyzed by high?speed camera, scanning electron microscope(SEM) and energy dispersive X?ray spectroscopy(EDS). It is found that adhesive wear was the dominant wear pattern causing tool failure. The process and microcosmic mechanism of the tool’s adhesive wear are analyzed and discussed based on the experimental results. It is shown that adhesive wear of the tool occurs due to the wear of coating, the a nity of elements Fe and Co, and the grinding of workpiece materials to the tool material. The process of adhesive wear includes both microcosmic elements di usion and macroscopic cyclic process of adhe?sion, tearing and fracture.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
文摘Based on three kinds of dynamic test of MEMS, a dynamic system for the vibration test of micro machined gyroscope based on high speed photography is introduced. Firstly, the architecture of the system hardware is introduced. Secondly, the image tracking performance is compared by the test using the template matching algorithm, the mean shift algorithm and the SURF algorithm. The vibration curve shows that high speed photograph combined with SURF algorithm is faster, more ac- curate, and more suitable for the vibration test of micro machined gyroscope. After the frequency a- nalysis and related interpolation, more characteristics of micro gyroscope can be obtained.
基金This work has been partly supported by the National Natural Science Foundation of China(NSFC 51877093,51807075)National Key Research and Development Program of China(Project ID:2018YFE0100200)+2 种基金Fundamental Research Funds for the Central Universities(2019kfyXMBZ031)Project funded by China Postdoctoral Science Foundation(2019M652640)Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2018JQ5009 and Scientific Research Program Funded by Shaanxi Provincial Education Department of China under Grant No.18JK0398。
文摘Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resulting in irreversible demagnetization of the permanent magnet(PM).To obtain low rotor temperature,two novel rotor structures with low rotor eddy current loss are proposed in this paper.With the output torque and air gap flux density unchanged,the performance of HSPMMs with the two proposed rotor structures are analyzed based on finite element algorithm(FEA),including eddy current loss and temperature.Finally,the appropriate parameters of the proposed rotor structures are selected,and the electromagnetic(EM)performance,rotor stress and temperature are compared with those of the conventional rotor structure.Index Terms-Eddy current loss,finite element algorithm(FEA),electromagnetic(EM)performance,high speed permanent magnet machines(HSPMMs).
基金Supported by National Natural Science Foundation of China(Grant No.50875171)National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA04Z150)
文摘A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.
文摘In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study,fractured tools which were used in a titanium alloys 5-axis milling process have been observed both in the macro scale using a PG-1000 light microscope and in the micro scale using a Scanning Electron Microscope (SEM) respectively. These observations indicate that most of these tool fractures are the result of tool chipping. Further analysis of each chipping event has shown that beachmarks emanate from points on the cutting edge. This visual evidence indicates that the cutting edge is failing in fatigue due to cyclical mechanical and/or thermal stresses. Initial analyses explaining some of the outlying conditions for this phenomenon are discussed. Future analysis regarding determining the underlying causes of the fatigue phenomenon is then outlined.
文摘High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due to the high temperature at the tool-workpiece interface. Tool wear impairs the surface finish and hence the tool life is reduced. That is why an important objective of metal cutting research has been the assessment of tool wear patterns and mechanisms. In this paper, wear performances of PCBN tool, ceramic tool, coated carbide tool and fine-grained carbide tool in high speed face milling were presented when cutting cast iron, 45# tempered carbon steel and 45# hardened carbon steel. Tool wear patterns were examined through a tool-making microscope. The research results showed that tool wear types differed in various matching of materials between cutting tool and workpiece. The dominant wear patterns observed were rake face wear, flank wear, chipping, fracture and breakage. The main wear mechanisms were mechanical friction, adhesion, diffusion and chemical wear promoted by cutting forces and high cutting temperature. Hence, the important considerations of high speed cutting tool materials are high heat-resistance and wear-resistance, chemical stability as well as resistance to failure of coatings. The research results will be great benefit to the design and the selection of tool materials and control of tool wear in high-speed machining processes.
基金Funded by the National Natural Science Foundation of China(50705052)Doctoral Degree Fund of Education Ministry (20070422032)
文摘The essence of oxidation wear machanism of cenmented carbide tool was studied based on thermodynamics. Standard Gibbs free energy of possible reactions in cutting process at different temperature was calculated using substance Gibbs free energy function methods, and the sequence of reaction possibility order was researched as well as characteristics of every reaction. Theoretical calculation shows that WO3, Co3O4, TiO2 and CoWO4 are the main resultants, which are proved with the experiment results.
文摘The laser melted-resolidified processing on W18Cr4V high speed tool steel has been made us- ing a 1 kW CO_2 continuous wave laser device.The microstructure of the laser melted- resolidified layer has been examined by optical microscopy and transmission electron microscopy(TEM).It was characteristic of extremely fine dendrite in the laser melted- resolidified layer and δ-ferrite in bulk form in the center of dendrite.The predominant twin martensite and a little dislocation martensite existed in the dendrite.The thin plate-like M_(213)C_6 carbide precipitated coherently on the twin martensites along their twin plane.There were both austenite rich in W,V and Cr and M_6C carbide in the interdendritic regions.
文摘In order to achieve high speed of tufting machine,the oval gear is used as the transmission mechanism between the main shaft and the slave shaft. And then,mathematical model of tufting machine spindle system is established by transfer matrix method.Finally,the dynamic reaction force of the connection and the unbalanced response of the joint between the general tufting machine and the improved spindle system are studied by using Matlab numerical simulation. The analysis results showthat when the spindle speed reaches 1 000 r/min, the dynamic reaction force of the improved spindle system at the joint is far less than that of the general tufting machine,and the unbalanced response is reduced from 0. 22 mm to 0. 10 mm.
文摘High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented.
文摘The paper presents the design and technological aspects on the high speed electrical machines which include the mechanical radial and axial strees because of the centrifugal forces. It presents a reverse structure with outlet rotor and inlet stator that have high speed 20.000 rpm-24.000 rpm and power 1 kW for the pecific of the ventilanting centrifugal fan domain. This unconventional type of machine is not still in the phase of specific tests.
基金Selected from Proceedings of the 7th International Conference on Frontiers of Design and Manufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50605008).
文摘Graphite becomes the prevailing electrode material in electrical discharging machining (EDM)currently.Orthogonal cutting experiments are carried out to study the characteristics of graphite chip formation process.High speed milling experiments are conducted to study tool wear and cutting forces.The results show that depth of cut has great influence on graphite chip formation.The removal process of graphite in high speed milling is the mutual result of cutting and grinding process. Graphite is prone to cause severe abrasion wear to coated carbide endmills due to its high abrasiveness nature.The major patterns of tool wear are flank wear,rake wear,micro-chipping and breakage. Cutting forces can be reduced by adoption of higher cutting speed,moderate feed per tooth,smaller radial and axial depths of cut,and up cutting.
基金Project(2010-0008-277) supported by NCRC Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and TechnologyProject supported by Pusan National University Research Grant, Korea
文摘The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekly. The curve of surface roughness versus honing time showed a rapid improvement initially and thereafter became steady, manifesting a saturation effect. The optimal honing time related to surface roughness was determined to be approximately 20 s. As the surface roughness increased, the critical loads reduced. At an average surface roughness (Ra) of 0.028 p.m, the highest critical loads of TiN and TiAlN coating layers were 98 and 114 N, respectively. Tool performances of uncoated and coated tools were conducted under high speed machining (HSM) of AISI D2 cold-worked die steel (62 HRC). Consequently, the TiAlN coated end-mill using honing treatment showed excellent tool life under HSM conditions.
基金the Hi-Tech Research and Development Pro-gram (863) of China (No. 2006AA04Z233)the National NaturalScience Foundation of China (No. 50575205)the Natural ScienceFoundation of Zhejiang Province (Nos. Y104243 and Y105686),China
文摘To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA421150)Specialized Re-search Fund for Doctor Program of Higher Education of China (No. 20030335091).
文摘To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.
文摘An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of R_a 2.4?nm can be achieved.
文摘High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional thermal resistance and the ability to retain mechanical properties at elevated temperatures of service environment over 700 ℃. However, they are classified as difficult-to-cut materials due to their high shear strength, work hardening tendency, highly abrasive carbide particles in the microstructure, strong tendency to weld and form built-up edge and low thermal conductivity. They have a tendency to maintain their strength at high temperature that is generated during machining. The Inconel 718 workpiece material used in the experiment was in the hot forged and annealed condition. The commercially available inserts (all inserts were made by Kennametal Inc.) were selected for the tests, a PVD TiAlN coated carbide, a CVD/PVD TiN/TiCN/TiN coated carbide and a CVD Al 2O 3/TiC/TiCN coated carbide were used at the cutting speed range about 50~100 m/min. Three kinds Sialon grade inserts with various geometry and cutting angles were used at the cutting speed range from 100 m/min to 300 m/min. For evaluating the inserts machinability when high speed cutting Inconel 718, Taylor Formula within certain cutting speeds, an high speed cutting experiment of tool life was carried out to establish the models of tool life by means of rapid facing turning test. The conclusions drawn from the turning of Inconel 718 with silicon nitride based ceramic; PVD and CVD coated carbide inserts are as follows: Studies on tool wear in high speed machining. The thorough investigations and studies were made on the tool wear form, wear process and wear mechanism in high speed cutting of difficult-to-machine materials with ceramic tools and with coated carbides. The major wear mechanisms of nickel-based alloys are interactions of abrasive wear, adhesion wear, micro-breakout and chipping. Optimization analysis on the application of high speed machining. Based on the experimental results, the optimal cutting parameters were determined for machining of Inconel 718 at high speed. The recommendation of tool inserts for high speed cutting inconel 718 were ceramic inserts of KY2000 with negative rake angle and KY2100 with round type, the PVD coated carbide insert KC7310 was recommended for its lower price.