期刊文献+
共找到3,504篇文章
< 1 2 176 >
每页显示 20 50 100
PRECISION OF HSK TOOLING SYSTEM IN HIGH SPEED MACHINING 被引量:1
1
作者 王贵成 吴卫国 +2 位作者 王树林 裴宏杰 沈春根 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期129-133,共5页
Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The r... Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time. 展开更多
关键词 high speed machining HSK tooling system orientation precision
下载PDF
ZERO TRANSMISSION AND ITS APPLICATION IN HIGH SPEED CNC MACHINE TOOLS 被引量:4
2
作者 Zhang Bolin, Ma Ping, Xiao Shuhong ,Li Yiping, Xiao Zhanglin (Department of Mechanical and Electronical Engineering,Guangdong University of Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第3期184-189,共6页
In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-wa... In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-water heat exchange system is used for cooling the spindle motor.The spindle is supported by Si_4N_3 ceramic ball angular contact bearings. An oil-air lubricator is used to lubricate and cool the spindle bearings.Some special structures are taken for balancing the spindle. 展开更多
关键词 high speed machining machine tool Spindle Ceramic ball bearing\
下载PDF
Wear Mechanism of Cemented Carbide Tool in High Speed Milling of Stainless Steel 被引量:2
3
作者 Guang-Jun Liu Zhao-Cheng Zhou +3 位作者 Xin Qian Wei-Hai Pang Guang-Hui Li Guang-Yu Tan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期177-186,共10页
Adhesion of cutting tool and chip often occurs when machining stainless steels with cemented carbide tools. Wear mechanism of cemented carbide tool in high speed milling of stainless steel 0Cr13Ni4 Mo was studied in t... Adhesion of cutting tool and chip often occurs when machining stainless steels with cemented carbide tools. Wear mechanism of cemented carbide tool in high speed milling of stainless steel 0Cr13Ni4 Mo was studied in this work. Machining tests on high speed milling of 0Cr13Ni4 Mo with a cemented carbide tool are conducted. The cutting force and cutting temperature are measured. The wear pattern is recorded and analyzed by high?speed camera, scanning electron microscope(SEM) and energy dispersive X?ray spectroscopy(EDS). It is found that adhesive wear was the dominant wear pattern causing tool failure. The process and microcosmic mechanism of the tool’s adhesive wear are analyzed and discussed based on the experimental results. It is shown that adhesive wear of the tool occurs due to the wear of coating, the a nity of elements Fe and Co, and the grinding of workpiece materials to the tool material. The process of adhesive wear includes both microcosmic elements di usion and macroscopic cyclic process of adhe?sion, tearing and fracture. 展开更多
关键词 Cemented carbide tool high speed milling Stainless steel Wear mechanism
下载PDF
CUTTING REGULARITY AND DISCHARGE CHARACTERISTICS BY USING COMPOSITE COOLING LIQUID IN WIRE CUT ELECTRICAL DISCHARGE MACHINE WITH HIGH WIRE TRAVELING SPEED 被引量:11
4
作者 LIU Zhidong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期41-45,共5页
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte... The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid. 展开更多
关键词 Wire cut electrical discharge machine with high wire traveling speed Composite cooling liquid Discharge characteristic Cutting regularity
下载PDF
Vibration test of micro machined gyroscope based on high speed photography and SURF 被引量:1
5
作者 姚峰林 高世桥 +1 位作者 赵婕 高崇仁 《Journal of Beijing Institute of Technology》 EI CAS 2012年第2期179-184,共6页
Based on three kinds of dynamic test of MEMS, a dynamic system for the vibration test of micro machined gyroscope based on high speed photography is introduced. Firstly, the architecture of the system hardware is intr... Based on three kinds of dynamic test of MEMS, a dynamic system for the vibration test of micro machined gyroscope based on high speed photography is introduced. Firstly, the architecture of the system hardware is introduced. Secondly, the image tracking performance is compared by the test using the template matching algorithm, the mean shift algorithm and the SURF algorithm. The vibration curve shows that high speed photograph combined with SURF algorithm is faster, more ac- curate, and more suitable for the vibration test of micro machined gyroscope. After the frequency a- nalysis and related interpolation, more characteristics of micro gyroscope can be obtained. 展开更多
关键词 high speed photograph SURF micro machined gyroscope dynamic test VIBRATION IMAGE
下载PDF
Novel Rotors with Low Eddy Current Loss for High Speed Permanent Magnet Machines 被引量:4
6
作者 Xin Cheng Wei Xu +2 位作者 Guanghui Du Guohui Zeng Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第2期187-194,共8页
Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resultin... Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resulting in irreversible demagnetization of the permanent magnet(PM).To obtain low rotor temperature,two novel rotor structures with low rotor eddy current loss are proposed in this paper.With the output torque and air gap flux density unchanged,the performance of HSPMMs with the two proposed rotor structures are analyzed based on finite element algorithm(FEA),including eddy current loss and temperature.Finally,the appropriate parameters of the proposed rotor structures are selected,and the electromagnetic(EM)performance,rotor stress and temperature are compared with those of the conventional rotor structure.Index Terms-Eddy current loss,finite element algorithm(FEA),electromagnetic(EM)performance,high speed permanent magnet machines(HSPMMs). 展开更多
关键词 Eddy current loss finite element algorithm(FEA) electromagnetic(EM)performance high speed permanent magnet machines(HSPMMs).
下载PDF
An Optimal Feed Interpolator Based on G^2 Continuous Bézier Curves for High-Speed Machining of Linear Tool Path 被引量:6
7
作者 Yongqiao Jin Sheng Zhao Yuhan Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期109-118,共10页
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange... A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments. 展开更多
关键词 G^2 CONTINUOUS path Least SQUARE method high-speed MACHINING CONTINUOUS short SEGMENTS Optimal FEED INTERPOLATOR Data compression
下载PDF
Tool Failure Analysis in High Speed Milling of Titanium Alloys
8
作者 MEYER Kevin YU Cindy 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期137-142,共6页
In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study,fractured tools which were used in a titanium alloys 5-axis milling process have... In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study,fractured tools which were used in a titanium alloys 5-axis milling process have been observed both in the macro scale using a PG-1000 light microscope and in the micro scale using a Scanning Electron Microscope (SEM) respectively. These observations indicate that most of these tool fractures are the result of tool chipping. Further analysis of each chipping event has shown that beachmarks emanate from points on the cutting edge. This visual evidence indicates that the cutting edge is failing in fatigue due to cyclical mechanical and/or thermal stresses. Initial analyses explaining some of the outlying conditions for this phenomenon are discussed. Future analysis regarding determining the underlying causes of the fatigue phenomenon is then outlined. 展开更多
关键词 TITANIUM alloys high speed MILLING CUTTING edge CHIPPING tool failure analysis
下载PDF
Wear Patterns and Mechanisms of Cutting Tools in High Speed Face Milling
9
作者 LIU Zhan-qiang, AI Xing, ZHANG Hui, WANG Zun-tong, WAN Yi (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期58-,共1页
High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due... High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due to the high temperature at the tool-workpiece interface. Tool wear impairs the surface finish and hence the tool life is reduced. That is why an important objective of metal cutting research has been the assessment of tool wear patterns and mechanisms. In this paper, wear performances of PCBN tool, ceramic tool, coated carbide tool and fine-grained carbide tool in high speed face milling were presented when cutting cast iron, 45# tempered carbon steel and 45# hardened carbon steel. Tool wear patterns were examined through a tool-making microscope. The research results showed that tool wear types differed in various matching of materials between cutting tool and workpiece. The dominant wear patterns observed were rake face wear, flank wear, chipping, fracture and breakage. The main wear mechanisms were mechanical friction, adhesion, diffusion and chemical wear promoted by cutting forces and high cutting temperature. Hence, the important considerations of high speed cutting tool materials are high heat-resistance and wear-resistance, chemical stability as well as resistance to failure of coatings. The research results will be great benefit to the design and the selection of tool materials and control of tool wear in high-speed machining processes. 展开更多
关键词 cutting tool WEAR high speed machining face milling
下载PDF
Thermodynamics Analysis of Oxidation Wear Behavior of Cemented Carbide Tools in High Speed Machining
10
作者 邵芳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第6期867-870,共4页
The essence of oxidation wear machanism of cenmented carbide tool was studied based on thermodynamics. Standard Gibbs free energy of possible reactions in cutting process at different temperature was calculated using ... The essence of oxidation wear machanism of cenmented carbide tool was studied based on thermodynamics. Standard Gibbs free energy of possible reactions in cutting process at different temperature was calculated using substance Gibbs free energy function methods, and the sequence of reaction possibility order was researched as well as characteristics of every reaction. Theoretical calculation shows that WO3, Co3O4, TiO2 and CoWO4 are the main resultants, which are proved with the experiment results. 展开更多
关键词 THERMODYNAMICS carbide tool high speed machining oxidation wear
下载PDF
MICROSTRUCTURE OF LASER MELTED-RESOLIDIFIED LAYER ON HIGH SPEED TOOL STEEL
11
《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第1期13-15,共3页
The laser melted-resolidified processing on W18Cr4V high speed tool steel has been made us- ing a 1 kW CO_2 continuous wave laser device.The microstructure of the laser melted- resolidified layer has been examined by ... The laser melted-resolidified processing on W18Cr4V high speed tool steel has been made us- ing a 1 kW CO_2 continuous wave laser device.The microstructure of the laser melted- resolidified layer has been examined by optical microscopy and transmission electron microscopy(TEM).It was characteristic of extremely fine dendrite in the laser melted- resolidified layer and δ-ferrite in bulk form in the center of dendrite.The predominant twin martensite and a little dislocation martensite existed in the dendrite.The thin plate-like M_(213)C_6 carbide precipitated coherently on the twin martensites along their twin plane.There were both austenite rich in W,V and Cr and M_6C carbide in the interdendritic regions. 展开更多
关键词 high speed tool steel laser surface modification MICROSTRUCTURE
下载PDF
High Speed of Tufting Machine Based on Transfer Matrix Method
12
作者 DING Caihong TONG Yun 《Journal of Donghua University(English Edition)》 EI CAS 2018年第6期495-499,共5页
In order to achieve high speed of tufting machine,the oval gear is used as the transmission mechanism between the main shaft and the slave shaft. And then,mathematical model of tufting machine spindle system is establ... In order to achieve high speed of tufting machine,the oval gear is used as the transmission mechanism between the main shaft and the slave shaft. And then,mathematical model of tufting machine spindle system is established by transfer matrix method.Finally,the dynamic reaction force of the connection and the unbalanced response of the joint between the general tufting machine and the improved spindle system are studied by using Matlab numerical simulation. The analysis results showthat when the spindle speed reaches 1 000 r/min, the dynamic reaction force of the improved spindle system at the joint is far less than that of the general tufting machine,and the unbalanced response is reduced from 0. 22 mm to 0. 10 mm. 展开更多
关键词 tufting machine high speed OVAL GEAR dynamic REACTION FORCE unbalanced response vibration
下载PDF
Research Progress of Key Technology of High-Speed and High Precision Motorized Spindles 被引量:3
13
作者 XIONGWan-li MIHai-qing HUANGHong-wu 《International Journal of Plant Engineering and Management》 2005年第2期70-76,共7页
High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high prec... High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented. 展开更多
关键词 motorized spindles high-speed machining
下载PDF
Theoretical and Technological Aspects on the Inverse Structure in the Fields of High Speed Electric Machines
14
作者 Mircea Ignat Teodora Paraschiv Ioan Cristinel Haraguta 《Journal of Energy and Power Engineering》 2012年第3期456-462,共7页
The paper presents the design and technological aspects on the high speed electrical machines which include the mechanical radial and axial strees because of the centrifugal forces. It presents a reverse structure wit... The paper presents the design and technological aspects on the high speed electrical machines which include the mechanical radial and axial strees because of the centrifugal forces. It presents a reverse structure with outlet rotor and inlet stator that have high speed 20.000 rpm-24.000 rpm and power 1 kW for the pecific of the ventilanting centrifugal fan domain. This unconventional type of machine is not still in the phase of specific tests. 展开更多
关键词 Asyncrone machine CAGE high speed magnetic circuit mechanical stress motor reverse structure.
下载PDF
HIGH SPEED MILLING OF GRAPHITE ELECTRODE WITH ENDMILL OF SMALL DIAMETER 被引量:14
15
作者 WANG Chengyong ZHOU Li +1 位作者 FU Hao HU Zhouling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期27-31,共5页
Graphite becomes the prevailing electrode material in electrical discharging machining (EDM)currently.Orthogonal cutting experiments are carried out to study the characteristics of graphite chip formation process.Hi... Graphite becomes the prevailing electrode material in electrical discharging machining (EDM)currently.Orthogonal cutting experiments are carried out to study the characteristics of graphite chip formation process.High speed milling experiments are conducted to study tool wear and cutting forces.The results show that depth of cut has great influence on graphite chip formation.The removal process of graphite in high speed milling is the mutual result of cutting and grinding process. Graphite is prone to cause severe abrasion wear to coated carbide endmills due to its high abrasiveness nature.The major patterns of tool wear are flank wear,rake wear,micro-chipping and breakage. Cutting forces can be reduced by adoption of higher cutting speed,moderate feed per tooth,smaller radial and axial depths of cut,and up cutting. 展开更多
关键词 high speed milling Graphite electrode tool wear Cutting force
下载PDF
Effects of honing treatment on AIP-TiN and TiAlN coated end-mill for high speed machining 被引量:5
16
作者 Jae-Young HEO Sung-Hak CHO +3 位作者 Tae-Jin JE Kwang-Ho KIM Hyung-Woo LEE Myung-Chang KANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期83-87,共5页
The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekl... The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekly. The curve of surface roughness versus honing time showed a rapid improvement initially and thereafter became steady, manifesting a saturation effect. The optimal honing time related to surface roughness was determined to be approximately 20 s. As the surface roughness increased, the critical loads reduced. At an average surface roughness (Ra) of 0.028 p.m, the highest critical loads of TiN and TiAlN coating layers were 98 and 114 N, respectively. Tool performances of uncoated and coated tools were conducted under high speed machining (HSM) of AISI D2 cold-worked die steel (62 HRC). Consequently, the TiAlN coated end-mill using honing treatment showed excellent tool life under HSM conditions. 展开更多
关键词 TiA1N arc ion plating honing treatment high speed machining tool life
下载PDF
Research on cubic polynomial acceleration and deceleration control model for high speed NC machining 被引量:10
17
作者 Hong-bin LENG Yi-jie WU Xiao-hong PAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期358-365,共8页
To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c... To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully. 展开更多
关键词 high speed NC machining Acceleration and deceleration (acc/dec) control model Cubic speed curve Discrete mathematical model Adaptive acceleration and deceleration control algorithm
下载PDF
MOTION VELOCITY SMOOTH LINK IN HIGH SPEED MACHINING 被引量:9
18
作者 REN Kun FU Jianzhong CHEN Zichen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期17-20,共4页
To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and a... To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly. 展开更多
关键词 high speed machining Motion velocity link S-type control equation
下载PDF
High Speed Lapping of SiC Ceramic Material with Solid (Fixed) Abrasives 被引量:1
19
作者 张伟 杨鑫宏 +2 位作者 尚春民 胡孝勇 胡忠辉 《Defence Technology(防务技术)》 SCIE EI CAS 2005年第2期225-228,共4页
An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is the... An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of R_a 2.4?nm can be achieved. 展开更多
关键词 SiC ceramic MATERIAL high speed LAPPING with SOLID ABRASIVE machining in DUCTILE mode surface roughness
下载PDF
High Speed Cutting Inconel 718 with Coated Carbide and Ceramic Inserts 被引量:1
20
作者 LI Liang, HE Ning, WANG Min, WANG Zhi-gang (College of Mechanical and Electrical, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期44-45,共2页
High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional ther... High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional thermal resistance and the ability to retain mechanical properties at elevated temperatures of service environment over 700 ℃. However, they are classified as difficult-to-cut materials due to their high shear strength, work hardening tendency, highly abrasive carbide particles in the microstructure, strong tendency to weld and form built-up edge and low thermal conductivity. They have a tendency to maintain their strength at high temperature that is generated during machining. The Inconel 718 workpiece material used in the experiment was in the hot forged and annealed condition. The commercially available inserts (all inserts were made by Kennametal Inc.) were selected for the tests, a PVD TiAlN coated carbide, a CVD/PVD TiN/TiCN/TiN coated carbide and a CVD Al 2O 3/TiC/TiCN coated carbide were used at the cutting speed range about 50~100 m/min. Three kinds Sialon grade inserts with various geometry and cutting angles were used at the cutting speed range from 100 m/min to 300 m/min. For evaluating the inserts machinability when high speed cutting Inconel 718, Taylor Formula within certain cutting speeds, an high speed cutting experiment of tool life was carried out to establish the models of tool life by means of rapid facing turning test. The conclusions drawn from the turning of Inconel 718 with silicon nitride based ceramic; PVD and CVD coated carbide inserts are as follows: Studies on tool wear in high speed machining. The thorough investigations and studies were made on the tool wear form, wear process and wear mechanism in high speed cutting of difficult-to-machine materials with ceramic tools and with coated carbides. The major wear mechanisms of nickel-based alloys are interactions of abrasive wear, adhesion wear, micro-breakout and chipping. Optimization analysis on the application of high speed machining. Based on the experimental results, the optimal cutting parameters were determined for machining of Inconel 718 at high speed. The recommendation of tool inserts for high speed cutting inconel 718 were ceramic inserts of KY2000 with negative rake angle and KY2100 with round type, the PVD coated carbide insert KC7310 was recommended for its lower price. 展开更多
关键词 tool wear coated carbide tools ceramic tools Inconel 718 high speed cutting
下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部