The influence of multipass high rotating speed friction stir processing(FSP)on the microstructure evolution,corrosion behavior,and tensile properties of the stirred zone(SZ)was investigated by EBSD,TEM,SEM,electrochem...The influence of multipass high rotating speed friction stir processing(FSP)on the microstructure evolution,corrosion behavior,and tensile properties of the stirred zone(SZ)was investigated by EBSD,TEM,SEM,electrochemical workstation and electronic universal testing machine.The mean grain size of the SZ is significantly refined,and it increases with the increase of the processing pass.In addition to an obvious increase in the number,the distribution ofβ-Al12Mg17 precipitates also becomes more uniform and dispersed with increasing the processing pass.Compared with the as-received AZ31 alloy,the tensile properties of the SZ are hardly improved,but the corrosion resistances are significantly enhanced.The corrosion potential of the SZ prepared by 4-pass FSP is increased from−1.56 V for the unprocessed AZ31 alloy to−1.19 V,while the corrosion current is decreased from 1.55×10^−4 to 5.47×10^−5 A.展开更多
The axial piston pumps in aerospace applications are often characterized by high-speed rotation to achieve great power density. However, their internal rotating parts are fully immersed in the casing oil during operat...The axial piston pumps in aerospace applications are often characterized by high-speed rotation to achieve great power density. However, their internal rotating parts are fully immersed in the casing oil during operation, leading to considerable churning losses (more than 10% of total power losses) at high rotational speeds. The churning losses deserve much attention at the design stage of high-speed axial piston pumps, but accurate analytical models are not available to estimate the drag torque associated with the churning losses. In this paper, we derive the analytical expressions of the drag torque acting on the key rotating parts immersed in oil, including the cylinder block and the multiple pistons in a circular array. The calculated drag torque agrees well with the experimental data over a wide range of rotational speeds from 1500 to 12000 r/min. The presented analytical model provides practical guidelines for reducing the churning losses in high-speed axial piston pumps or motors.展开更多
基金Projects(51861034,51601167)supported by the National Natural Science Foundation of ChinaProject(2020GY-262)supported by the Science and Technology Department of Shaanxi Province,China+1 种基金Project(2019-86-1)supported by the Technology Bureau of Yulin,ChinaProject(20GK06)supported by the High-level Talent Program of Yulin University,China。
文摘The influence of multipass high rotating speed friction stir processing(FSP)on the microstructure evolution,corrosion behavior,and tensile properties of the stirred zone(SZ)was investigated by EBSD,TEM,SEM,electrochemical workstation and electronic universal testing machine.The mean grain size of the SZ is significantly refined,and it increases with the increase of the processing pass.In addition to an obvious increase in the number,the distribution ofβ-Al12Mg17 precipitates also becomes more uniform and dispersed with increasing the processing pass.Compared with the as-received AZ31 alloy,the tensile properties of the SZ are hardly improved,but the corrosion resistances are significantly enhanced.The corrosion potential of the SZ prepared by 4-pass FSP is increased from−1.56 V for the unprocessed AZ31 alloy to−1.19 V,while the corrosion current is decreased from 1.55×10^−4 to 5.47×10^−5 A.
基金the National Key R&D Program of China(Grant No.2021YFB2011902)the National Natural Science Foundation of China(Grant No.52005323)+1 种基金the National Postdoctoral Program for Innovative Talents(Grant No.BX20200210)the China Postdoctoral Science Foundation(Grant No.2019M660086).
文摘The axial piston pumps in aerospace applications are often characterized by high-speed rotation to achieve great power density. However, their internal rotating parts are fully immersed in the casing oil during operation, leading to considerable churning losses (more than 10% of total power losses) at high rotational speeds. The churning losses deserve much attention at the design stage of high-speed axial piston pumps, but accurate analytical models are not available to estimate the drag torque associated with the churning losses. In this paper, we derive the analytical expressions of the drag torque acting on the key rotating parts immersed in oil, including the cylinder block and the multiple pistons in a circular array. The calculated drag torque agrees well with the experimental data over a wide range of rotational speeds from 1500 to 12000 r/min. The presented analytical model provides practical guidelines for reducing the churning losses in high-speed axial piston pumps or motors.