The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the gen...The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.展开更多
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it...High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.展开更多
The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical mo...The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.展开更多
Purpose-The design goal for the tracking interval of high-speed railway trains in China is 3 min,but it is difficult to achieve,and it is widely believed that it is mainly limited by the tracking interval of train arr...Purpose-The design goal for the tracking interval of high-speed railway trains in China is 3 min,but it is difficult to achieve,and it is widely believed that it is mainly limited by the tracking interval of train arrivals.If the train arrival tracking interval can be compressed,it will be beneficial for China's high-speed railway to achieve a 3-min train tracking interval.The goal of this article is to study how to compress the train arrival tracking interval.Design/methodologylapproach-By simulating the process of dense train groups arriving at the station and stopping,the headway between train arrivals at the station was calculated,and the pattern of train arrival headway was obtained,changing the traditional understanding that the train arrival headway is considered the main factor limiting the headway of trains.Findings-When the running speed of trains is high,the headway between trains is short,the length of the station approach throat area is considerable and frequent train arrivals at the station,the arrival headway for the first group or several groups of trains will exceed the headway,but the subsequent sets of trains will havea headway equal to the arrival headway.This convergence characteristic is obtained by appropriately increasing the running time.Originality/value-According to this pattern,there is no need to overly emphasize the impact of train arrival headway on the headway.This plays an important role in compressing train headway and improving high-speedrailwaycapacity.展开更多
Purpose–The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China,which is based on P-wave earthquake early-...Purpose–The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China,which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.Design/methodology/approach–The paper describes the key technologies that are involved in the development of the system,such as P-wave identification and earthquake early-warning,multi-source seismic information fusion and earthquake emergency treatment technologies.The paper also presents the test results of the system,which show that it has complete functions and its major performance indicators meet the design requirements.Findings–The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety.The key technical indicators of the system have excellent performance:The first report time of the P-wave is less than three seconds.From the first arrival of P-wave to the beginning of train braking,the total delay of onboard emergency treatment is 3.63 seconds under 95%probability.The average total delay for power failures triggered by substations is 3.3 seconds.Originality/value–The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions.It also contributes to the earthquake prevention and disaster reduction efforts.展开更多
As High Speed Rail(HSR)has proliferated globally,so has a related research field dedicated to exploring and addressing its unique issues.Yet,studies to understand and classify the HSR research domain are limited.This ...As High Speed Rail(HSR)has proliferated globally,so has a related research field dedicated to exploring and addressing its unique issues.Yet,studies to understand and classify the HSR research domain are limited.This paper addresses the gap,using bibliometric analysis to identify future research areas and 20 candidate topics for literature review based on keyword analysis through VOSviewer.Article and review papers related to HSR published in the last 20 years(2003-2022)were retrieved from Scopus,and then analyzed to determine the split in knowledge between languages,the collaboration between countries and institutions,highly productive and cited journals,and research topics which have and have not been reviewed.Approximately 30%of the search results were published exclusively in Chinese,highlighting the importance of extending the evaluation to cover both languages.This is a novel aspect of the work,which has enabled the recognition of potential knowledge gaps.It is recommended that future reviews incorporate works in both languages,possibly through international collaboration.Institutions in China and other countries that are strong collaborators have been identified,as well as relevant,highly cited journals.展开更多
The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board...The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board train control system.To conduct fault prediction for the BTM unit based on actual fault data,this study proposes a prediction method combining reliability statistics and machine learning,and achieves the fusion of prediction results from different dimensions through multi-method interactive validation.Firstly,a method for predicting equipment fault time targeting batch equipment is introduced.This method utilizes reliability statistics to construct a model of the remaining faultless operating time distribution considering uncertainty,thereby predicting the remaining faultless operating probability of the BTM unit.Secondly,considering the complexity of the BTM unit’s fault mechanism,the small sample size of fault cases,and the potential presence of multiple fault features in fault text records,an individual-oriented fault prediction method based on Bayesian-optimized Gradient Boosting Regression Tree(Bayes-GBRT)is proposed.This method achieves better prediction results compared to linear regression algorithms and random forest regression algorithms,with an average absolute error of only 0.224 years for predicting the fault time of this type of equipment.Finally,a multi-method interactive validation approach is proposed,enabling the fusion and validation of multi-dimensional results.The results indicate that the predicted fault time and the actual fault time conform to a log-normal distribution,and the parameter estimation results are basically consistent,verifying the accuracy and effectiveness of the prediction results.The above research findings can provide technical support for the maintenance and modification of BTM units,effectively reducing maintenance costs and ensuring the safe operation of high-speed railway,thus having practical engineering value for preventive maintenance.展开更多
It was found that the steel plate in the composite plate in the WJ-8 fastener used in high speed rail is rusty. The objective of this study is to test the zinc coating of the steel plate. A literature review was condu...It was found that the steel plate in the composite plate in the WJ-8 fastener used in high speed rail is rusty. The objective of this study is to test the zinc coating of the steel plate. A literature review was conducted to identify the zinc coating techniques, and the companies that can provide different coating service was identified. A salt fog chamber was built that was in compliance with the ANSI B117 code, and the steel plates that were coated by the identified companies were tested using the salt fog chamber. The results indicated that the coating technique that had the best performance in preventing corrosion was the Greenkote plates with passivation. The galvanized option had the roughest coating layer, and it was the most reactive in the salt water solution. This makes it non-ideal for the dynamic rail environment because the increased friction of the plate could damage the supports, especially during extreme temperatures that would cause the rail to expand or contract. Greenkote with Phosphate and ArmorGalv also provided increased corrosion prevention with a smooth, strong finish, but it had more rust on the surface area than the Greenkote with ELU passivation. The ArmorGalv sample had more rust on the surface area than the Greenkote samples. This may not be a weakness in the ArmorGalv process;rather, it likely was the result of this particular sample not having the added protection of a colored coating.展开更多
This paper proposes an adaptive unscented Kalman filter algorithm(ARUKF)to implement fault estimation for the dynamics of high⁃speed train(HST)with measurement uncertainty and time⁃varying noise with unknown statistic...This paper proposes an adaptive unscented Kalman filter algorithm(ARUKF)to implement fault estimation for the dynamics of high⁃speed train(HST)with measurement uncertainty and time⁃varying noise with unknown statistics.Firstly,regarding the actuator and sensor fault as the auxiliary variables of the dynamics of HST,an augmented system is established,and the fault estimation problem for dynamics of HST is formulated as the state estimation of the augmented system.Then,considering the measurement uncertainties,a robust lower bound is proposed to modify the update of the UKF to decrease the influence of measurement uncertainty on the filtering accuracy.Further,considering the unknown time⁃varying noise of the dynamics of HST,an adaptive UKF algorithm based on moving window is proposed to estimate the time⁃varying noise so that accurate concurrent actuator and sensor fault estimations of dynamics of HST is implemented.Finally,a five-car model of HST is given to show the effectiveness of this method.展开更多
High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading del...High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading delays on a network scale. Studying the delay propagation mechanism could help to improve the timetable resilience in the planning stage and realize cooperative rescheduling for dispatchers. To quickly and effectively predict the spatial-temporal range of cascading delays, this paper proposes a max-plus algebra based delay propagation model considering trains’ operation strategy and the systems’ constraints. A double-layer network based breadth-first search algorithm based on the constraint network and the timetable network is further proposed to solve the delay propagation process for different kinds of emergencies. The proposed model could deal with the delay propagation problem when emergencies occur in sections or stations and is suitable for static emergencies and dynamic emergencies. Case studies show that the proposed algorithm can significantly improve the computational efficiency of the large-scale HSR network. Moreover, the real operational data of China HSR is adopted to verify the proposed model, and the results show that the cascading delays can be timely and accurately inferred, and the delay propagation characteristics under three kinds of emergencies are unfolded.展开更多
Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds.By taking the effects of wave development and sea spra...Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds.By taking the effects of wave development and sea spray into account,a new parameterization of drag coefficient applicable from low to extreme winds is proposed.It is shown that,under low-to-moderate wind conditions so that the sea spray effects could be neglected,the nondimensional aerodynamic roughness first increases and then decreases with the increasing wave age;whereas under high wind conditions,the drag coefficient decreases with the increasing wind speed due to the modification of the logarithmic wind profile by the effect of sea spray droplets produced by bursting bubbles or wind tearing breaking wave crests.The drag coefficients and sea surface aerodynamic roughnesses reach their maximum values vary under different wave developments.Correspondingly,the reduction of drag coefficient under high winds reduces the increasing rate of friction velocity with increasing wind speed.展开更多
High speed railway technologies are rapidly development in the world.The total distance of the high speed railway is more than 40,000 kilometers in China,and many types of high speed Electrical Multi-Units(EMUs)are op...High speed railway technologies are rapidly development in the world.The total distance of the high speed railway is more than 40,000 kilometers in China,and many types of high speed Electrical Multi-Units(EMUs)are operated.The top operation velocity of the train reaches 350 km/h.New science and technologies are developing rapidly.New generation technologies such as the information technology,intelligent manufacturing,new material and processing,innovating design philosophy have revolutionary influence on the high speed train.It promotes the high speed train performance such as intelligence,reliable operation and environment-friendly.Based on many years investigation of the trend of the technology development and requirement of general public,the trend of technology development in five aspects are presented in this paper.The five aspects include economic applicability,high speed and high efficiency,green and low carbon,intelligent safety,comfortable and high quality.展开更多
In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditio...In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditional FEM of slab non-ballast track structures was improved.The multiscale FEM of CRTSII type slab nonballast track structures was established based on the general finite element program ABAQUs.Then the comparative calculation was made between various FEMs,showing that the high solution precision,fast modelling speed and high solution efficiency could be obtained.Therefore,the multiscale FEM was suitable for the parametric study on mechanical behaviour of CRTSII type slab non-ballast track structures,and then the key influence factor and constructions could be optimized.展开更多
Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed ...Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.展开更多
Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenge...Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel,taking the passenger compartment window glass of the CRH3 high speed train onWuhan-Guangzhou High Speed Railway as the research object,this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit,the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km$h-1.Findings-The results show that while crossing the tunnel,the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures,which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain.The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa,and the maximum value occurs at the corresponding time of crossing the tunnel groups.The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects,while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel.The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time.The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure.Thus,the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.Originality/value-The research results provide data support for the analysis of mechanical characteristics,damage mechanism,strength design and structural optimization of high speed train glass.展开更多
Purpose–The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China,and point out the development direction of rail technology of high-speed railway.Desi...Purpose–The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China,and point out the development direction of rail technology of high-speed railway.Design/methodology/approach–This study reviews the evolution of high-speed rail standards in China,comparing their chemical composition,mechanical attributes and geometric specifications with EN standards.It delves into the status of rail production technology,shifts in key performance indicators and the quality characteristics of rails.The analysis further examines the interplay between wheels and rails,the implementation of grinding technology and the techniques for inspecting rail service conditions.It encapsulates the salient features of rail operation and maintenance within the high-speed railway ecosystem.The paper concludes with an insightful prognosis of high-speed railway technology development in China.Findings–The rail standards of high-speed railway in China are scientific and advanced,highly operational and in line with international standards.The quality and performance of rail in China have reached the world’s advanced level.The 60N profile guarantees the operation quality of wheel–rail interaction effectively.The rail grinding technology system scientifically guarantees the long-term good service performance of the rail.The rail service state detection technology is scientific and efficient.The rail technology will take“more intelligent”and“higher speed”as the development direction to meet the future needs of high-speed railway in China.Originality/value–The development direction of rail technology for high-speed railway in China is defined,which will promote the continuous innovation and breakthrough of rail technology.展开更多
Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutiv...Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutivedays (e.g. 120 days).Design/methodology/approach – By analyzing the characteristics of the historical data on daily passengervolume of HSR systems, the date and holiday labels were designed with determined value ranges.In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double LayerParallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of thedaily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result byweighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of dailypassenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume toensure the accuracy of medium-term forecast.Findings – According to the example application, in which the DLP-WNN modelwas used for the medium-termforecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the averageabsolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP)neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalizedregression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for themedium-term forecast of the daily passenger volume of HSR.Originality/value – This study proposed a Double Layer Parallel structure forecast model for medium-termdaily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and WaveletNeural Network. The predict results are important input data for supporting the line planning, scheduling andother decisions in operation and management in HSR systems.展开更多
Surface integrity of a new damage-tolerant titanium alloy (TC21), including surface roughness, microhardness and metallurgical structure is investigated when normal and high speed milling are used at different tool ...Surface integrity of a new damage-tolerant titanium alloy (TC21), including surface roughness, microhardness and metallurgical structure is investigated when normal and high speed milling are used at different tool wear status. Results show that good surface integrity of TC21 can be obtained in high speed milling. In addition, even in acutely worn stages, there is no so-called serious hardening layer (or white layer) according to the studies on microhardness and metallurgical structure.展开更多
The engineblock production lines need high speed tapping with tungsten carbide taps. In the tapping process, the machining precision and the tool life of taps are directly influenced by tapping forces. And the paramet...The engineblock production lines need high speed tapping with tungsten carbide taps. In the tapping process, the machining precision and the tool life of taps are directly influenced by tapping forces. And the parameter optimization of tap structures is also correlated with the variation of tapping forces. Therefore, the study of tapping forces is necessary in developing new style taps. Several experiments about some novel carbide taps are performed on a vertical machining center by a Kistler dynamometer system in blind tapping both gray cast iron and ductile cast iron. And the variations of tapping forces are analyzed in tapping-in and tapping-out periods. It indicates that cutting forces hardly vary with the tap wear in tapping cast iron. Contrarily, tapping forces are closely correlated with the holding method. Besides, it also depends on the helix angle, the flute numbers and the plasticity of the work material to some extent.展开更多
Shaped charge jet formation process is studied under the conditions of different background lights by means of high speed frame photography. In order to shoot true jet appearance, the glass tube in which jet moves is...Shaped charge jet formation process is studied under the conditions of different background lights by means of high speed frame photography. In order to shoot true jet appearance, the glass tube in which jet moves is vacuumized. The experiment results show that observing jet appearance with the double reflecting mirrors system is feasible as long as the vacuum of the glass tube can meet the requirement of experiment.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.52005441)Young Elite Scientist Sponsorship Program by CAST of China (Grant No.2022-2024QNRC001)+4 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ21E050017)Zhejiang Provincial“Pioneer”and“Leading Goose”R&D Program of China (Grant Nos.2022C01122,2022C01132)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202316)Fundamental Research Funds for the Provincial Universities of Zhejiang of China (Grant No.RF-A2023007)Research Project of ZJUT of China (Grant No.GYY-ZH-2023075)。
文摘The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.
基金Key Basic Research Project of Strengthening the Foundations Plan of China (Grant No.2019-JCJQ-ZD-360-12)National Defense Basic Scientific Research Program of China (Grant No.JCKY2021208B011)to provide fund for conducting experiments。
文摘High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Foundation of Jiangsu Province(Grant No.SBK2022020579)the Newton Advanced Fellowships by the Royal Society(Grant No.NAF\R1\180304).
文摘The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.
基金State Railway Corporation of China Limited under the Science and Technology Research and Development Programme(2021X007)China Academy of Railway Research(2021YJ012)+1 种基金National Natural Science Foundation of China(52302417)Natural Science Foundation of Sichuan Province of China(2023NSFSC0906).
文摘Purpose-The design goal for the tracking interval of high-speed railway trains in China is 3 min,but it is difficult to achieve,and it is widely believed that it is mainly limited by the tracking interval of train arrivals.If the train arrival tracking interval can be compressed,it will be beneficial for China's high-speed railway to achieve a 3-min train tracking interval.The goal of this article is to study how to compress the train arrival tracking interval.Design/methodologylapproach-By simulating the process of dense train groups arriving at the station and stopping,the headway between train arrivals at the station was calculated,and the pattern of train arrival headway was obtained,changing the traditional understanding that the train arrival headway is considered the main factor limiting the headway of trains.Findings-When the running speed of trains is high,the headway between trains is short,the length of the station approach throat area is considerable and frequent train arrivals at the station,the arrival headway for the first group or several groups of trains will exceed the headway,but the subsequent sets of trains will havea headway equal to the arrival headway.This convergence characteristic is obtained by appropriately increasing the running time.Originality/value-According to this pattern,there is no need to overly emphasize the impact of train arrival headway on the headway.This plays an important role in compressing train headway and improving high-speedrailwaycapacity.
基金This research is supported by the R&D Fund Project of China Academy of Railway Science Corporation Limited[Grant No.2022Y253].
文摘Purpose–The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China,which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.Design/methodology/approach–The paper describes the key technologies that are involved in the development of the system,such as P-wave identification and earthquake early-warning,multi-source seismic information fusion and earthquake emergency treatment technologies.The paper also presents the test results of the system,which show that it has complete functions and its major performance indicators meet the design requirements.Findings–The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety.The key technical indicators of the system have excellent performance:The first report time of the P-wave is less than three seconds.From the first arrival of P-wave to the beginning of train braking,the total delay of onboard emergency treatment is 3.63 seconds under 95%probability.The average total delay for power failures triggered by substations is 3.3 seconds.Originality/value–The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions.It also contributes to the earthquake prevention and disaster reduction efforts.
文摘As High Speed Rail(HSR)has proliferated globally,so has a related research field dedicated to exploring and addressing its unique issues.Yet,studies to understand and classify the HSR research domain are limited.This paper addresses the gap,using bibliometric analysis to identify future research areas and 20 candidate topics for literature review based on keyword analysis through VOSviewer.Article and review papers related to HSR published in the last 20 years(2003-2022)were retrieved from Scopus,and then analyzed to determine the split in knowledge between languages,the collaboration between countries and institutions,highly productive and cited journals,and research topics which have and have not been reviewed.Approximately 30%of the search results were published exclusively in Chinese,highlighting the importance of extending the evaluation to cover both languages.This is a novel aspect of the work,which has enabled the recognition of potential knowledge gaps.It is recommended that future reviews incorporate works in both languages,possibly through international collaboration.Institutions in China and other countries that are strong collaborators have been identified,as well as relevant,highly cited journals.
基金supported by the Integrated Rail Transit Dispatch Control and Intermodal Transport Service Technology Project(Grant No.2022YFB4300500).
文摘The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board train control system.To conduct fault prediction for the BTM unit based on actual fault data,this study proposes a prediction method combining reliability statistics and machine learning,and achieves the fusion of prediction results from different dimensions through multi-method interactive validation.Firstly,a method for predicting equipment fault time targeting batch equipment is introduced.This method utilizes reliability statistics to construct a model of the remaining faultless operating time distribution considering uncertainty,thereby predicting the remaining faultless operating probability of the BTM unit.Secondly,considering the complexity of the BTM unit’s fault mechanism,the small sample size of fault cases,and the potential presence of multiple fault features in fault text records,an individual-oriented fault prediction method based on Bayesian-optimized Gradient Boosting Regression Tree(Bayes-GBRT)is proposed.This method achieves better prediction results compared to linear regression algorithms and random forest regression algorithms,with an average absolute error of only 0.224 years for predicting the fault time of this type of equipment.Finally,a multi-method interactive validation approach is proposed,enabling the fusion and validation of multi-dimensional results.The results indicate that the predicted fault time and the actual fault time conform to a log-normal distribution,and the parameter estimation results are basically consistent,verifying the accuracy and effectiveness of the prediction results.The above research findings can provide technical support for the maintenance and modification of BTM units,effectively reducing maintenance costs and ensuring the safe operation of high-speed railway,thus having practical engineering value for preventive maintenance.
文摘It was found that the steel plate in the composite plate in the WJ-8 fastener used in high speed rail is rusty. The objective of this study is to test the zinc coating of the steel plate. A literature review was conducted to identify the zinc coating techniques, and the companies that can provide different coating service was identified. A salt fog chamber was built that was in compliance with the ANSI B117 code, and the steel plates that were coated by the identified companies were tested using the salt fog chamber. The results indicated that the coating technique that had the best performance in preventing corrosion was the Greenkote plates with passivation. The galvanized option had the roughest coating layer, and it was the most reactive in the salt water solution. This makes it non-ideal for the dynamic rail environment because the increased friction of the plate could damage the supports, especially during extreme temperatures that would cause the rail to expand or contract. Greenkote with Phosphate and ArmorGalv also provided increased corrosion prevention with a smooth, strong finish, but it had more rust on the surface area than the Greenkote with ELU passivation. The ArmorGalv sample had more rust on the surface area than the Greenkote samples. This may not be a weakness in the ArmorGalv process;rather, it likely was the result of this particular sample not having the added protection of a colored coating.
基金the Department of Education of Liaoning Province(Grant No.JDL2020020)the Changzhou Applied Basic Research Program(Grant No.CJ2020007).
文摘This paper proposes an adaptive unscented Kalman filter algorithm(ARUKF)to implement fault estimation for the dynamics of high⁃speed train(HST)with measurement uncertainty and time⁃varying noise with unknown statistics.Firstly,regarding the actuator and sensor fault as the auxiliary variables of the dynamics of HST,an augmented system is established,and the fault estimation problem for dynamics of HST is formulated as the state estimation of the augmented system.Then,considering the measurement uncertainties,a robust lower bound is proposed to modify the update of the UKF to decrease the influence of measurement uncertainty on the filtering accuracy.Further,considering the unknown time⁃varying noise of the dynamics of HST,an adaptive UKF algorithm based on moving window is proposed to estimate the time⁃varying noise so that accurate concurrent actuator and sensor fault estimations of dynamics of HST is implemented.Finally,a five-car model of HST is given to show the effectiveness of this method.
基金supported by the National Natural Science Foundation of China (U1834211, 61925302, 62103033)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems (20210104)。
文摘High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading delays on a network scale. Studying the delay propagation mechanism could help to improve the timetable resilience in the planning stage and realize cooperative rescheduling for dispatchers. To quickly and effectively predict the spatial-temporal range of cascading delays, this paper proposes a max-plus algebra based delay propagation model considering trains’ operation strategy and the systems’ constraints. A double-layer network based breadth-first search algorithm based on the constraint network and the timetable network is further proposed to solve the delay propagation process for different kinds of emergencies. The proposed model could deal with the delay propagation problem when emergencies occur in sections or stations and is suitable for static emergencies and dynamic emergencies. Case studies show that the proposed algorithm can significantly improve the computational efficiency of the large-scale HSR network. Moreover, the real operational data of China HSR is adopted to verify the proposed model, and the results show that the cascading delays can be timely and accurately inferred, and the delay propagation characteristics under three kinds of emergencies are unfolded.
基金supported by the National Key R&D Program of China(No.2018YFB1501901)the National Natural Science Foundation of China(Nos.51909114,U1806227 and U1906231)the Guangxi Key Laboratory of Marine Environmental Science,Guangxi Academy of Sciences(No.GXKLHY21-04).
文摘Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds.By taking the effects of wave development and sea spray into account,a new parameterization of drag coefficient applicable from low to extreme winds is proposed.It is shown that,under low-to-moderate wind conditions so that the sea spray effects could be neglected,the nondimensional aerodynamic roughness first increases and then decreases with the increasing wave age;whereas under high wind conditions,the drag coefficient decreases with the increasing wind speed due to the modification of the logarithmic wind profile by the effect of sea spray droplets produced by bursting bubbles or wind tearing breaking wave crests.The drag coefficients and sea surface aerodynamic roughnesses reach their maximum values vary under different wave developments.Correspondingly,the reduction of drag coefficient under high winds reduces the increasing rate of friction velocity with increasing wind speed.
文摘High speed railway technologies are rapidly development in the world.The total distance of the high speed railway is more than 40,000 kilometers in China,and many types of high speed Electrical Multi-Units(EMUs)are operated.The top operation velocity of the train reaches 350 km/h.New science and technologies are developing rapidly.New generation technologies such as the information technology,intelligent manufacturing,new material and processing,innovating design philosophy have revolutionary influence on the high speed train.It promotes the high speed train performance such as intelligence,reliable operation and environment-friendly.Based on many years investigation of the trend of the technology development and requirement of general public,the trend of technology development in five aspects are presented in this paper.The five aspects include economic applicability,high speed and high efficiency,green and low carbon,intelligent safety,comfortable and high quality.
基金supported by“111”Project(B18062)Fundamental Research Funds for the Central Universities(2019CDQYTM028).
文摘In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditional FEM of slab non-ballast track structures was improved.The multiscale FEM of CRTSII type slab nonballast track structures was established based on the general finite element program ABAQUs.Then the comparative calculation was made between various FEMs,showing that the high solution precision,fast modelling speed and high solution efficiency could be obtained.Therefore,the multiscale FEM was suitable for the parametric study on mechanical behaviour of CRTSII type slab non-ballast track structures,and then the key influence factor and constructions could be optimized.
基金The research was supported by the National Natural Science Foundation of China(Grant Nos.41731288 and 41972299)the Science and Technology Research and Development Program of China Railway(Grant No.P2018G050)+1 种基金the Young Top-Notch Talent Project of National“Ten Thousands Talent Program”(Grant No.2019YJ300)the Major Scientific Research and Development Project of China Academy of Railway Sciences Corporation Limited(Grant No.2019YJ026).
文摘Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.
基金supported by the National Natural Science Foundation of China (Grant Nos.52072356 and 52032011)the 2019 Zaozhuang High-level Talents Project (Grant No.ZZYF-01).
文摘Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel,taking the passenger compartment window glass of the CRH3 high speed train onWuhan-Guangzhou High Speed Railway as the research object,this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit,the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km$h-1.Findings-The results show that while crossing the tunnel,the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures,which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain.The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa,and the maximum value occurs at the corresponding time of crossing the tunnel groups.The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects,while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel.The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time.The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure.Thus,the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.Originality/value-The research results provide data support for the analysis of mechanical characteristics,damage mechanism,strength design and structural optimization of high speed train glass.
基金supported by the National Key R&D Program of China[Grant No.2022YFB2603402]the Task of Science and Technology R&D Program of China Railway Corporation[Grant No.K2023G013]the R&D Fund Project of China Academy of Railway Science Corporation Limited[Grant No.2022YJ165].
文摘Purpose–The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China,and point out the development direction of rail technology of high-speed railway.Design/methodology/approach–This study reviews the evolution of high-speed rail standards in China,comparing their chemical composition,mechanical attributes and geometric specifications with EN standards.It delves into the status of rail production technology,shifts in key performance indicators and the quality characteristics of rails.The analysis further examines the interplay between wheels and rails,the implementation of grinding technology and the techniques for inspecting rail service conditions.It encapsulates the salient features of rail operation and maintenance within the high-speed railway ecosystem.The paper concludes with an insightful prognosis of high-speed railway technology development in China.Findings–The rail standards of high-speed railway in China are scientific and advanced,highly operational and in line with international standards.The quality and performance of rail in China have reached the world’s advanced level.The 60N profile guarantees the operation quality of wheel–rail interaction effectively.The rail grinding technology system scientifically guarantees the long-term good service performance of the rail.The rail service state detection technology is scientific and efficient.The rail technology will take“more intelligent”and“higher speed”as the development direction to meet the future needs of high-speed railway in China.Originality/value–The development direction of rail technology for high-speed railway in China is defined,which will promote the continuous innovation and breakthrough of rail technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.72171236 and 71701216)the National Key R&D Program of China(Grant No.2020YFB1600400)+2 种基金the China Scholarship Council(202008360277)the Key Science and Technology Research Program of the Educational Department of Jiangxi Province(Grant No.GJJ200605)the Natural Science Foundation of Hunan Province(Grant No.2020JJ5783).
文摘Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutivedays (e.g. 120 days).Design/methodology/approach – By analyzing the characteristics of the historical data on daily passengervolume of HSR systems, the date and holiday labels were designed with determined value ranges.In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double LayerParallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of thedaily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result byweighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of dailypassenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume toensure the accuracy of medium-term forecast.Findings – According to the example application, in which the DLP-WNN modelwas used for the medium-termforecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the averageabsolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP)neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalizedregression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for themedium-term forecast of the daily passenger volume of HSR.Originality/value – This study proposed a Double Layer Parallel structure forecast model for medium-termdaily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and WaveletNeural Network. The predict results are important input data for supporting the line planning, scheduling andother decisions in operation and management in HSR systems.
基金Supported by the National Natural Science Foundation of China(50975141)the National Scienceand Technology Major Project(2010ZX04012-042)the Aeronautical Science Foundation(2010352005)~~
文摘Surface integrity of a new damage-tolerant titanium alloy (TC21), including surface roughness, microhardness and metallurgical structure is investigated when normal and high speed milling are used at different tool wear status. Results show that good surface integrity of TC21 can be obtained in high speed milling. In addition, even in acutely worn stages, there is no so-called serious hardening layer (or white layer) according to the studies on microhardness and metallurgical structure.
文摘The engineblock production lines need high speed tapping with tungsten carbide taps. In the tapping process, the machining precision and the tool life of taps are directly influenced by tapping forces. And the parameter optimization of tap structures is also correlated with the variation of tapping forces. Therefore, the study of tapping forces is necessary in developing new style taps. Several experiments about some novel carbide taps are performed on a vertical machining center by a Kistler dynamometer system in blind tapping both gray cast iron and ductile cast iron. And the variations of tapping forces are analyzed in tapping-in and tapping-out periods. It indicates that cutting forces hardly vary with the tap wear in tapping cast iron. Contrarily, tapping forces are closely correlated with the holding method. Besides, it also depends on the helix angle, the flute numbers and the plasticity of the work material to some extent.
文摘Shaped charge jet formation process is studied under the conditions of different background lights by means of high speed frame photography. In order to shoot true jet appearance, the glass tube in which jet moves is vacuumized. The experiment results show that observing jet appearance with the double reflecting mirrors system is feasible as long as the vacuum of the glass tube can meet the requirement of experiment.