Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication ...Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication between fluid solver and structure solver is avoided by inserting the program of train-track coupling dynamics into fluid dynamics program, and the relaxation factor concerning the load boundary of the fluid-structure interface is introduced to improve the fluctuation and convergence of aerodynamic forces. With this method, the fluid-structure dynamics of a highspeed train are simulated under the condition that the velocity of crosswind is 13.8 m/s and the train speed is 350 km/h. When the relaxation factor equals 0.5, the fluctuation of aerodynamic forces is lower and its convergence is faster than in other cases. The side force and lateral displacement of the head train are compared between off-line simulation and co-simulation. Simulation results show that the fluid-structure interaction has a significant influence on the aerodynam- ics and attitude of the head train under crosswind conditions. In addition, the security indexes of the head train worsen after the fluid-structure interaction calculation. Therefore, the fluid-structure interaction calculation is necessary for high-speed trains.展开更多
The numerical simulation based on Reynolds time-averaged equation is one of the approved methods to evaluate the aerodynamic performance of trains in crosswind.However,there are several turbulence models,trains may pr...The numerical simulation based on Reynolds time-averaged equation is one of the approved methods to evaluate the aerodynamic performance of trains in crosswind.However,there are several turbulence models,trains may present different aerodynamic performances in crosswind using different turbulence models.In order to select the most suitable turbulence model,the inter-city express 2(ICE2)model is chosen as a research object,6 different turbulence models are used to simulate the flow characteristics,surface pressure and aerodynamic forces of the train in crosswind,respectively.6 turbulence models are the standard k-ε,Renormalization Group(RNG)k-ε,Realizable k-ε,Shear Stress Transport(SST)k-ω,standard k-ωand Spalart-Allmaras(SPA),respectively.The numerical results and the wind tunnel experimental data are compared.The results show that the most accurate model for predicting the surface pressure of the train is SST k-ω,followed by Realizable k-ε.Compared with the experimental result,the error of the side force coefficient obtained by SST k-ωand Realizable k-εturbulence model is less than 1%.The most accurate prediction for the lift force coefficient is achieved by SST k-ω,followed by RNG k-ε.By comparing 6 different turbulence models,the SST k-ωmodel is most suitable for the numerical simulation of the aerodynamic behavior of trains in crosswind.展开更多
Aerodynamic forces and dynamic performances of railway vehicles are coupled and affected by each other. On the one hand, aerodynamic forces change the displacements of a train. On the other hand, displacements affect ...Aerodynamic forces and dynamic performances of railway vehicles are coupled and affected by each other. On the one hand, aerodynamic forces change the displacements of a train. On the other hand, displacements affect aerodynamic forces. Based on vehicle-track coupling dynamics and aerodynamics, a numerical approach to the interaction between airflow and a high-speed train is presented in this paper. Aerodynamic forces and dynamic performances of a high-speed train subjected to crosswind were numerically simulated. Results showed that the interaction between airflow and a high-speed train has a significant influence on displacements and aerodynamic forces of the head coach. Therefore, it is necessary to consider the interaction between airflow and a high-speed train subjected to crosswind.展开更多
基金supported by the National Natural Science Foundations of China(Nos.50821063 and 50823004)973 Program(No.2007CB714701)the Fundamental Research Funds for the Central Universities(No.2010XS34)
文摘Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication between fluid solver and structure solver is avoided by inserting the program of train-track coupling dynamics into fluid dynamics program, and the relaxation factor concerning the load boundary of the fluid-structure interface is introduced to improve the fluctuation and convergence of aerodynamic forces. With this method, the fluid-structure dynamics of a highspeed train are simulated under the condition that the velocity of crosswind is 13.8 m/s and the train speed is 350 km/h. When the relaxation factor equals 0.5, the fluctuation of aerodynamic forces is lower and its convergence is faster than in other cases. The side force and lateral displacement of the head train are compared between off-line simulation and co-simulation. Simulation results show that the fluid-structure interaction has a significant influence on the aerodynam- ics and attitude of the head train under crosswind conditions. In addition, the security indexes of the head train worsen after the fluid-structure interaction calculation. Therefore, the fluid-structure interaction calculation is necessary for high-speed trains.
基金Supported by National Natural Science Foundation of China(Grant No.51605397)Sichuan Provincial Science and Technology Program of China(Grant No.2019YJ0227)Self-determined Project of State Key Laboratory of Traction Power(Grant No.2019TPL_T02)
文摘The numerical simulation based on Reynolds time-averaged equation is one of the approved methods to evaluate the aerodynamic performance of trains in crosswind.However,there are several turbulence models,trains may present different aerodynamic performances in crosswind using different turbulence models.In order to select the most suitable turbulence model,the inter-city express 2(ICE2)model is chosen as a research object,6 different turbulence models are used to simulate the flow characteristics,surface pressure and aerodynamic forces of the train in crosswind,respectively.6 turbulence models are the standard k-ε,Renormalization Group(RNG)k-ε,Realizable k-ε,Shear Stress Transport(SST)k-ω,standard k-ωand Spalart-Allmaras(SPA),respectively.The numerical results and the wind tunnel experimental data are compared.The results show that the most accurate model for predicting the surface pressure of the train is SST k-ω,followed by Realizable k-ε.Compared with the experimental result,the error of the side force coefficient obtained by SST k-ωand Realizable k-εturbulence model is less than 1%.The most accurate prediction for the lift force coefficient is achieved by SST k-ω,followed by RNG k-ε.By comparing 6 different turbulence models,the SST k-ωmodel is most suitable for the numerical simulation of the aerodynamic behavior of trains in crosswind.
基金supported by the National Key Technology R&D Program of China (No. 2009BAG12A01-C08)the Joint Fund of High-speed Railway Foundation (No. U1234208), China
文摘Aerodynamic forces and dynamic performances of railway vehicles are coupled and affected by each other. On the one hand, aerodynamic forces change the displacements of a train. On the other hand, displacements affect aerodynamic forces. Based on vehicle-track coupling dynamics and aerodynamics, a numerical approach to the interaction between airflow and a high-speed train is presented in this paper. Aerodynamic forces and dynamic performances of a high-speed train subjected to crosswind were numerically simulated. Results showed that the interaction between airflow and a high-speed train has a significant influence on displacements and aerodynamic forces of the head coach. Therefore, it is necessary to consider the interaction between airflow and a high-speed train subjected to crosswind.
基金Project(52308419)supported by the National Natural Science Foundation of ChinaProject(R-5020-18)supported by the Research Grants Council,University Grants Committee of the Hong Kong Special Administrative Region(SAR),China+4 种基金Project(K-BBY1)supported by the Innovation and Technology Commission of the Hong Kong SAR Government,ChinaProject(1-W21Q)supported by the Hong Kong Polytechnic University's Postdoc Matching Fund Scheme,ChinaProject(Major Project,2021-Major-01)supported by Science and Technology Research and Development Program Project of China Railway Group LimitedProject(N2022G031)supported by the Science and Technology Research and Development Program Project of China RailwayProject(Major Project,2022-Key-22)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。