Using LBR-370 numerical control lathe,high speed cutting was applied to AZ31 magnesium alloy.The influence of cutting parameters on microstructure,surface roughness and machining hardening were investigated by using t...Using LBR-370 numerical control lathe,high speed cutting was applied to AZ31 magnesium alloy.The influence of cutting parameters on microstructure,surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment.The results show that the cutting parameters have an important effect on microstructure,surface roughness and machine hardening.The depth of stress layer,roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate.Moreover,we established a prediction model of the roughness,which has an important guidance on actual machining process of magnesium alloy.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional ther...High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional thermal resistance and the ability to retain mechanical properties at elevated temperatures of service environment over 700 ℃. However, they are classified as difficult-to-cut materials due to their high shear strength, work hardening tendency, highly abrasive carbide particles in the microstructure, strong tendency to weld and form built-up edge and low thermal conductivity. They have a tendency to maintain their strength at high temperature that is generated during machining. The Inconel 718 workpiece material used in the experiment was in the hot forged and annealed condition. The commercially available inserts (all inserts were made by Kennametal Inc.) were selected for the tests, a PVD TiAlN coated carbide, a CVD/PVD TiN/TiCN/TiN coated carbide and a CVD Al 2O 3/TiC/TiCN coated carbide were used at the cutting speed range about 50~100 m/min. Three kinds Sialon grade inserts with various geometry and cutting angles were used at the cutting speed range from 100 m/min to 300 m/min. For evaluating the inserts machinability when high speed cutting Inconel 718, Taylor Formula within certain cutting speeds, an high speed cutting experiment of tool life was carried out to establish the models of tool life by means of rapid facing turning test. The conclusions drawn from the turning of Inconel 718 with silicon nitride based ceramic; PVD and CVD coated carbide inserts are as follows: Studies on tool wear in high speed machining. The thorough investigations and studies were made on the tool wear form, wear process and wear mechanism in high speed cutting of difficult-to-machine materials with ceramic tools and with coated carbides. The major wear mechanisms of nickel-based alloys are interactions of abrasive wear, adhesion wear, micro-breakout and chipping. Optimization analysis on the application of high speed machining. Based on the experimental results, the optimal cutting parameters were determined for machining of Inconel 718 at high speed. The recommendation of tool inserts for high speed cutting inconel 718 were ceramic inserts of KY2000 with negative rake angle and KY2100 with round type, the PVD coated carbide insert KC7310 was recommended for its lower price.展开更多
High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due...High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due to the high temperature at the tool-workpiece interface. Tool wear impairs the surface finish and hence the tool life is reduced. That is why an important objective of metal cutting research has been the assessment of tool wear patterns and mechanisms. In this paper, wear performances of PCBN tool, ceramic tool, coated carbide tool and fine-grained carbide tool in high speed face milling were presented when cutting cast iron, 45# tempered carbon steel and 45# hardened carbon steel. Tool wear patterns were examined through a tool-making microscope. The research results showed that tool wear types differed in various matching of materials between cutting tool and workpiece. The dominant wear patterns observed were rake face wear, flank wear, chipping, fracture and breakage. The main wear mechanisms were mechanical friction, adhesion, diffusion and chemical wear promoted by cutting forces and high cutting temperature. Hence, the important considerations of high speed cutting tool materials are high heat-resistance and wear-resistance, chemical stability as well as resistance to failure of coatings. The research results will be great benefit to the design and the selection of tool materials and control of tool wear in high-speed machining processes.展开更多
When machining D60 steel by high speed turn-milling under the different cooling and lubricating conditions, the cutting performance and the wear mechanism of the cermet cutter are researched. With water soluble coolin...When machining D60 steel by high speed turn-milling under the different cooling and lubricating conditions, the cutting performance and the wear mechanism of the cermet cutter are researched. With water soluble cooling fluid, the wear performance of the cermet cutter is bad, and does not adapt to the requirements of machining. However, when machining D60 by high speed turn-milling is under dry conditions, the wearing performance of the cermet cutter is very good and the cutting time lasts almost 3 hours. The wear mechanism of the cermet cutter under the water soluble cooling fluid is different from the dry condition. With the water soluble cooling fluid, a great deal of little chap units are formed since high frequency alternates heat stress. The crash and desquamate of these chap units is the main cause of the cutter wearing. Under dry cutting conditions, it is the main cause of cermet cutter wear in the felting phase intenerating causing rigid phase grains to fall.展开更多
Graphite becomes the prevailing electrode material in electrical discharging machining (EDM)currently.Orthogonal cutting experiments are carried out to study the characteristics of graphite chip formation process.Hi...Graphite becomes the prevailing electrode material in electrical discharging machining (EDM)currently.Orthogonal cutting experiments are carried out to study the characteristics of graphite chip formation process.High speed milling experiments are conducted to study tool wear and cutting forces.The results show that depth of cut has great influence on graphite chip formation.The removal process of graphite in high speed milling is the mutual result of cutting and grinding process. Graphite is prone to cause severe abrasion wear to coated carbide endmills due to its high abrasiveness nature.The major patterns of tool wear are flank wear,rake wear,micro-chipping and breakage. Cutting forces can be reduced by adoption of higher cutting speed,moderate feed per tooth,smaller radial and axial depths of cut,and up cutting.展开更多
In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study,fractured tools which were used in a titanium alloys 5-axis milling process have...In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study,fractured tools which were used in a titanium alloys 5-axis milling process have been observed both in the macro scale using a PG-1000 light microscope and in the micro scale using a Scanning Electron Microscope (SEM) respectively. These observations indicate that most of these tool fractures are the result of tool chipping. Further analysis of each chipping event has shown that beachmarks emanate from points on the cutting edge. This visual evidence indicates that the cutting edge is failing in fatigue due to cyclical mechanical and/or thermal stresses. Initial analyses explaining some of the outlying conditions for this phenomenon are discussed. Future analysis regarding determining the underlying causes of the fatigue phenomenon is then outlined.展开更多
This paper begins with a consideration of the influence of feed per revolution upon the depth of a cut and the impact of the machining method on the direction of tool pressure average and subsequent description of eff...This paper begins with a consideration of the influence of feed per revolution upon the depth of a cut and the impact of the machining method on the direction of tool pressure average and subsequent description of efficient cutting directions and the methods for load cell orientation. The paper goes further into the key conclusions concerning the dependences of the cutting depth at high-speed milling as in the case of discontinuous functions. It ends with recommendations offered for positioning of load cells for cut-up milling and cut-down milling.展开更多
In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic millin...In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic milling forces were investi- gated. The effects of the parameters of the process, i.e., cutting speed, feed per tooth, and depth of axial cut, on cutting forces were studied. The cutting force signals under different cutting speed conditions and different cutting tool wear stages were analyzed by frequency spectrum analysis. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The results indicate that a characteristic frequency in cutting force power spectrum does in fact exist. The amplitudes increase with the increase of cutting speed and tool wear level, which could be applied to the monitoring of the cutting process.展开更多
High-efficiency abrasive process with CBN grinding wheel is one of the important techniques of advanced manufacture. Combined with raw and finishing machining, it can attain high material removal rate like turning, mi...High-efficiency abrasive process with CBN grinding wheel is one of the important techniques of advanced manufacture. Combined with raw and finishing machining, it can attain high material removal rate like turning, milling and planning. The difficult-to-grinding materials can also be ground by means of this method with high performance. In the present paper, development status and latest progresses on high-efficiency abrasive machining technologies with CBN grinding wheel relate to high speed and super-high speed grinding, quick point-grinding, high efficiency deep-cut grinding, creep feed deep grinding, heavy-duty snagging and abrasive belt grinding were summarized. The efficiency and parameters range of these abrasive machining processes were compared. The key technologies of high efficiency abrasive machining, including grinding wheel, spindle and bearing, grinder, coolant supplying, installation and orientation of wheel and workpiece and safety defended, as well as intelligent monitor and NC grinding were investigated. It is concluded that high efficiency abrasive machining is a promising technology in the future.展开更多
基金National Natural Science Foundation of China(Grant No.51505143)Hunan Provincial Natural Science Foundation of China(Grant nos.14JJ3111)+1 种基金L.L.appreciates the financial supports from the China Postdoctoral Science Foundation(Grant No.2014M562128)Scientific Research Fund of Hunan Provincial Education Department(Grant no.14C0455).
文摘Using LBR-370 numerical control lathe,high speed cutting was applied to AZ31 magnesium alloy.The influence of cutting parameters on microstructure,surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment.The results show that the cutting parameters have an important effect on microstructure,surface roughness and machine hardening.The depth of stress layer,roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate.Moreover,we established a prediction model of the roughness,which has an important guidance on actual machining process of magnesium alloy.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
文摘High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional thermal resistance and the ability to retain mechanical properties at elevated temperatures of service environment over 700 ℃. However, they are classified as difficult-to-cut materials due to their high shear strength, work hardening tendency, highly abrasive carbide particles in the microstructure, strong tendency to weld and form built-up edge and low thermal conductivity. They have a tendency to maintain their strength at high temperature that is generated during machining. The Inconel 718 workpiece material used in the experiment was in the hot forged and annealed condition. The commercially available inserts (all inserts were made by Kennametal Inc.) were selected for the tests, a PVD TiAlN coated carbide, a CVD/PVD TiN/TiCN/TiN coated carbide and a CVD Al 2O 3/TiC/TiCN coated carbide were used at the cutting speed range about 50~100 m/min. Three kinds Sialon grade inserts with various geometry and cutting angles were used at the cutting speed range from 100 m/min to 300 m/min. For evaluating the inserts machinability when high speed cutting Inconel 718, Taylor Formula within certain cutting speeds, an high speed cutting experiment of tool life was carried out to establish the models of tool life by means of rapid facing turning test. The conclusions drawn from the turning of Inconel 718 with silicon nitride based ceramic; PVD and CVD coated carbide inserts are as follows: Studies on tool wear in high speed machining. The thorough investigations and studies were made on the tool wear form, wear process and wear mechanism in high speed cutting of difficult-to-machine materials with ceramic tools and with coated carbides. The major wear mechanisms of nickel-based alloys are interactions of abrasive wear, adhesion wear, micro-breakout and chipping. Optimization analysis on the application of high speed machining. Based on the experimental results, the optimal cutting parameters were determined for machining of Inconel 718 at high speed. The recommendation of tool inserts for high speed cutting inconel 718 were ceramic inserts of KY2000 with negative rake angle and KY2100 with round type, the PVD coated carbide insert KC7310 was recommended for its lower price.
文摘High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due to the high temperature at the tool-workpiece interface. Tool wear impairs the surface finish and hence the tool life is reduced. That is why an important objective of metal cutting research has been the assessment of tool wear patterns and mechanisms. In this paper, wear performances of PCBN tool, ceramic tool, coated carbide tool and fine-grained carbide tool in high speed face milling were presented when cutting cast iron, 45# tempered carbon steel and 45# hardened carbon steel. Tool wear patterns were examined through a tool-making microscope. The research results showed that tool wear types differed in various matching of materials between cutting tool and workpiece. The dominant wear patterns observed were rake face wear, flank wear, chipping, fracture and breakage. The main wear mechanisms were mechanical friction, adhesion, diffusion and chemical wear promoted by cutting forces and high cutting temperature. Hence, the important considerations of high speed cutting tool materials are high heat-resistance and wear-resistance, chemical stability as well as resistance to failure of coatings. The research results will be great benefit to the design and the selection of tool materials and control of tool wear in high-speed machining processes.
文摘When machining D60 steel by high speed turn-milling under the different cooling and lubricating conditions, the cutting performance and the wear mechanism of the cermet cutter are researched. With water soluble cooling fluid, the wear performance of the cermet cutter is bad, and does not adapt to the requirements of machining. However, when machining D60 by high speed turn-milling is under dry conditions, the wearing performance of the cermet cutter is very good and the cutting time lasts almost 3 hours. The wear mechanism of the cermet cutter under the water soluble cooling fluid is different from the dry condition. With the water soluble cooling fluid, a great deal of little chap units are formed since high frequency alternates heat stress. The crash and desquamate of these chap units is the main cause of the cutter wearing. Under dry cutting conditions, it is the main cause of cermet cutter wear in the felting phase intenerating causing rigid phase grains to fall.
基金Selected from Proceedings of the 7th International Conference on Frontiers of Design and Manufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50605008).
文摘Graphite becomes the prevailing electrode material in electrical discharging machining (EDM)currently.Orthogonal cutting experiments are carried out to study the characteristics of graphite chip formation process.High speed milling experiments are conducted to study tool wear and cutting forces.The results show that depth of cut has great influence on graphite chip formation.The removal process of graphite in high speed milling is the mutual result of cutting and grinding process. Graphite is prone to cause severe abrasion wear to coated carbide endmills due to its high abrasiveness nature.The major patterns of tool wear are flank wear,rake wear,micro-chipping and breakage. Cutting forces can be reduced by adoption of higher cutting speed,moderate feed per tooth,smaller radial and axial depths of cut,and up cutting.
文摘In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study,fractured tools which were used in a titanium alloys 5-axis milling process have been observed both in the macro scale using a PG-1000 light microscope and in the micro scale using a Scanning Electron Microscope (SEM) respectively. These observations indicate that most of these tool fractures are the result of tool chipping. Further analysis of each chipping event has shown that beachmarks emanate from points on the cutting edge. This visual evidence indicates that the cutting edge is failing in fatigue due to cyclical mechanical and/or thermal stresses. Initial analyses explaining some of the outlying conditions for this phenomenon are discussed. Future analysis regarding determining the underlying causes of the fatigue phenomenon is then outlined.
文摘This paper begins with a consideration of the influence of feed per revolution upon the depth of a cut and the impact of the machining method on the direction of tool pressure average and subsequent description of efficient cutting directions and the methods for load cell orientation. The paper goes further into the key conclusions concerning the dependences of the cutting depth at high-speed milling as in the case of discontinuous functions. It ends with recommendations offered for positioning of load cells for cut-up milling and cut-down milling.
基金Project (No.IRT0837) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic milling forces were investi- gated. The effects of the parameters of the process, i.e., cutting speed, feed per tooth, and depth of axial cut, on cutting forces were studied. The cutting force signals under different cutting speed conditions and different cutting tool wear stages were analyzed by frequency spectrum analysis. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The results indicate that a characteristic frequency in cutting force power spectrum does in fact exist. The amplitudes increase with the increase of cutting speed and tool wear level, which could be applied to the monitoring of the cutting process.
文摘High-efficiency abrasive process with CBN grinding wheel is one of the important techniques of advanced manufacture. Combined with raw and finishing machining, it can attain high material removal rate like turning, milling and planning. The difficult-to-grinding materials can also be ground by means of this method with high performance. In the present paper, development status and latest progresses on high-efficiency abrasive machining technologies with CBN grinding wheel relate to high speed and super-high speed grinding, quick point-grinding, high efficiency deep-cut grinding, creep feed deep grinding, heavy-duty snagging and abrasive belt grinding were summarized. The efficiency and parameters range of these abrasive machining processes were compared. The key technologies of high efficiency abrasive machining, including grinding wheel, spindle and bearing, grinder, coolant supplying, installation and orientation of wheel and workpiece and safety defended, as well as intelligent monitor and NC grinding were investigated. It is concluded that high efficiency abrasive machining is a promising technology in the future.