Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K alon...Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K along the normal direction.The microstructure was measured by optical microscopy,electron back-scattering diffraction,transmission electron microscopy and X-ray diffractometry.The results showed that Mg-7Gd-5Y-1.2Nd-0.5Zr alloy had the positive strain rate strengthening effect and thermal softening effect at high temperature.The solid solution of Gd and Y atoms in Mg-7Gd-5Y-1.2Nd-0.5Zr alloy reduced the asymmetry of α-Mg crystals and changed the critical shear stress of various deformation mechanisms.The main deformation mechanisms were prismatic slip and pyramidal(a)slip,{102}tension twinning,and dynamic recrystallization caused by local deformation such as particle-stimulated nucleation.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.展开更多
Static recrystallization of a high strain rate compressed Mg-1 Zn(wt.%)alloy was investigated using electron backscattered diffraction(EBSD).A novel 53°1010 structure was observed in the as-deformed alloy,which s...Static recrystallization of a high strain rate compressed Mg-1 Zn(wt.%)alloy was investigated using electron backscattered diffraction(EBSD).A novel 53°1010 structure was observed in the as-deformed alloy,which showed a{1012}-{1012}double twin relationship with the matrix.When the as-deformed alloy was annealed at 200°C,the{1011}compression twins and{1011}-{1012}double twins showed a higher priority to recrystallize.In addition,the coarse{1012}tension twins and their inner double twins were preferentially to recrystallize,while the lenticular tension twins had little impact on the recrystallization.Therefore,obtaining more compression twins or coarse twins instead of lenticular tension twins can be an effective approach to manipulate recrystallization process in deformed Mg alloys.展开更多
基金National Natural Science Foundation of China(Nos.51571145,51404137)City of Ningbo"science and technology innovation 2025"major special project(new energy vehicle lightweight magnesium alloy material precision forming technology)(No.2018B10045).
文摘Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K along the normal direction.The microstructure was measured by optical microscopy,electron back-scattering diffraction,transmission electron microscopy and X-ray diffractometry.The results showed that Mg-7Gd-5Y-1.2Nd-0.5Zr alloy had the positive strain rate strengthening effect and thermal softening effect at high temperature.The solid solution of Gd and Y atoms in Mg-7Gd-5Y-1.2Nd-0.5Zr alloy reduced the asymmetry of α-Mg crystals and changed the critical shear stress of various deformation mechanisms.The main deformation mechanisms were prismatic slip and pyramidal(a)slip,{102}tension twinning,and dynamic recrystallization caused by local deformation such as particle-stimulated nucleation.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.
基金financially supported by National Natural Science Foundation of China(No.51701121,No.51825101)Shanghai Sailing Program(17YF1408800)+2 种基金Science and Technology Commission of Shanghai Municipality(No.18511109302)Qinghai Provincial Science and Technology Key Program(No.2018-GX-A1)Startup Fund for Youngman Research at SJTU(No.18X100040022)
文摘Static recrystallization of a high strain rate compressed Mg-1 Zn(wt.%)alloy was investigated using electron backscattered diffraction(EBSD).A novel 53°1010 structure was observed in the as-deformed alloy,which showed a{1012}-{1012}double twin relationship with the matrix.When the as-deformed alloy was annealed at 200°C,the{1011}compression twins and{1011}-{1012}double twins showed a higher priority to recrystallize.In addition,the coarse{1012}tension twins and their inner double twins were preferentially to recrystallize,while the lenticular tension twins had little impact on the recrystallization.Therefore,obtaining more compression twins or coarse twins instead of lenticular tension twins can be an effective approach to manipulate recrystallization process in deformed Mg alloys.