The ice impact can cause a severe damage to an aircraft’s exposed structure,thus,requiring its prevention.The numerical simulation represents an effective method to overcome this challenge.The establishment of the ic...The ice impact can cause a severe damage to an aircraft’s exposed structure,thus,requiring its prevention.The numerical simulation represents an effective method to overcome this challenge.The establishment of the ice material model is critical.However,ice is not a common structural material and exhibits an extremely complex material behavior.The material models of ice reported so far are not able to accurately simulate the ice behavior at high strain rates.This study proposes a novel high-precision macro-phenomenological elastic fracture model based on the brittle behavior of ice at high strain rates.The developed model has been compared with five reported models by using the smoothed particle hydrodynamics method so as to simulate the ice-impact process with respect to the impact speeds and ice shapes.The important metrics and phenomena(impact force history,deformation and fragmentation of the ice projectile and deflection of the target)were compared with the experimental data reported in the literature.The findings obtained from the developed model are observed to be most consistent with the experimental data,which demonstrates that the model represents the basic physics and phenomena governing the ice impact at high strain rates.The developed model includes a relatively fewer number of material parameters.Further,the used parameters have a clear physical meaning and can be directly obtained through experiments.Moreover,no adjustment of any material parameter is needed,and the consumption duration is also acceptable.These advantages indicate that the developed model is suitable for simulating the iceimpact process and can be applied for the anti-ice impact design in aviation.展开更多
Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make u...Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.展开更多
A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 104-106 s 1. Flow stresses at high strain rate...A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 104-106 s 1. Flow stresses at high strain rates are close to that of cutting are difficult to test via experiments. Split Hopkinson compression bar (SHPB) technology is used to study the deformation behavior of Ti-6Al-4V alloy at strain rates of 10 -4-10 4s- 1. The Johnson Cook (JC) model was applied to characterize the flow stresses of the SHPB tests at various conditions. The parameters of the JC model are optimized by using a genetic algorithm technology. The JC plastic model and the energy density-based ductile failure criteria are adopted in the proposed SHPB finite element simulation model. The simulated flow stresses and the failure characteristics, such as the cracks along the adiabatic shear bands agree well with the experimental results. Afterwards, the SHPB simulation is used to simulate higher strain rate(approximately 3 × 10 4 s -1) conditions by minimizing the size of the specimen. The JC model parameters covering higher strain rate conditions which are close to the deformation condition in cutting were calculated based on the flow stresses obtained by using the SHPB tests (10 -4 - 10 4 s- 1) and simulation (up to 3 × 10 4 s - 1). The cutting simulation using the constitutive parameters is validated by the measured forces and chip morphology. The constitutive model and parameters for high strain rate conditions that are identical to those of cutting were obtained based on the SHPB tests and simulation.展开更多
基金supported by the National Science and Technology Major Project,China(No.J2019-I-0013-0013)。
文摘The ice impact can cause a severe damage to an aircraft’s exposed structure,thus,requiring its prevention.The numerical simulation represents an effective method to overcome this challenge.The establishment of the ice material model is critical.However,ice is not a common structural material and exhibits an extremely complex material behavior.The material models of ice reported so far are not able to accurately simulate the ice behavior at high strain rates.This study proposes a novel high-precision macro-phenomenological elastic fracture model based on the brittle behavior of ice at high strain rates.The developed model has been compared with five reported models by using the smoothed particle hydrodynamics method so as to simulate the ice-impact process with respect to the impact speeds and ice shapes.The important metrics and phenomena(impact force history,deformation and fragmentation of the ice projectile and deflection of the target)were compared with the experimental data reported in the literature.The findings obtained from the developed model are observed to be most consistent with the experimental data,which demonstrates that the model represents the basic physics and phenomena governing the ice impact at high strain rates.The developed model includes a relatively fewer number of material parameters.Further,the used parameters have a clear physical meaning and can be directly obtained through experiments.Moreover,no adjustment of any material parameter is needed,and the consumption duration is also acceptable.These advantages indicate that the developed model is suitable for simulating the iceimpact process and can be applied for the anti-ice impact design in aviation.
文摘Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205284,51575384)
文摘A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 104-106 s 1. Flow stresses at high strain rates are close to that of cutting are difficult to test via experiments. Split Hopkinson compression bar (SHPB) technology is used to study the deformation behavior of Ti-6Al-4V alloy at strain rates of 10 -4-10 4s- 1. The Johnson Cook (JC) model was applied to characterize the flow stresses of the SHPB tests at various conditions. The parameters of the JC model are optimized by using a genetic algorithm technology. The JC plastic model and the energy density-based ductile failure criteria are adopted in the proposed SHPB finite element simulation model. The simulated flow stresses and the failure characteristics, such as the cracks along the adiabatic shear bands agree well with the experimental results. Afterwards, the SHPB simulation is used to simulate higher strain rate(approximately 3 × 10 4 s -1) conditions by minimizing the size of the specimen. The JC model parameters covering higher strain rate conditions which are close to the deformation condition in cutting were calculated based on the flow stresses obtained by using the SHPB tests (10 -4 - 10 4 s- 1) and simulation (up to 3 × 10 4 s - 1). The cutting simulation using the constitutive parameters is validated by the measured forces and chip morphology. The constitutive model and parameters for high strain rate conditions that are identical to those of cutting were obtained based on the SHPB tests and simulation.