The dynamic tensile properties and microstructural evolution of an extruded EW75 magnesium alloy deformed at ambient temperature and different high strain rates(from 1000 to 3000 s^(-1))along extrusion direction(ED)we...The dynamic tensile properties and microstructural evolution of an extruded EW75 magnesium alloy deformed at ambient temperature and different high strain rates(from 1000 to 3000 s^(-1))along extrusion direction(ED)were investigated by Split Hopkinson Tension Bar(SHTB).The corresponding deformation mechanisms,texture evolution and microstructure changes were analyzed by optical microscope(OM),electron backscatter diffraction(EBSD)and transmission electron microscope(TEM).The results show that the extruded EW75 magnesium alloy along ED exhibits a conventional positive strain rate sensitivity that the dynamic flow stresses increase with in creasing strain rate.Texture measurements show that after dynamic tension,the initial weak texture of extruded EW75 magnesium alloy tansforms to a relatively strong<10-10>//ED texture with increasing strain rates.The microstructural analysis demonstrates that dislocation motion are main deformatin mode to accommodate dynamic tensile deformation at high strain rates.In addition,the interactions of dislocation-dislocation and dislocation-second phase lead to the in crease of flow stress and strain hardening with increasing strain rate.展开更多
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope...For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.展开更多
How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and un...How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and unloading constitutive relation presumed, the positions of the sensors embedded, the interactions between loading waves and unloading waves. For the split Hopkinson pressure bar (SHPB) technique, the assumption of one-dimensional stress wave propagation and the assumption of stress uniformity along the specimen should be satisfied. When the larger diameter bars are employed, the wave dispersion effects should be considered, including the high frequency oscillations, non-uniform stress distribution across the bar section, increase of rise time, and amplitude attenuation. The stress uniformity along the specimen is influenced by the reflection times in specimen, the wave impedance ratio of the specimen and the bar, and the waveform.展开更多
Molecular dynamics simulations of nanocrystalline Cu with average grain sizes of 3.1 nm, 6.2 nm, 12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 10^8 s^-1, 10^9 S^-1 and 10^10 s^-1 are ...Molecular dynamics simulations of nanocrystalline Cu with average grain sizes of 3.1 nm, 6.2 nm, 12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 10^8 s^-1, 10^9 S^-1 and 10^10 s^-1 are performed to study the combined grain size, strain rate and loading condition effects on mechanical properties. It is found that the strength of nanocrystalline Cu increases as grain size increases regardless of loading condition. Both the strength and ductility of nanocrystalline Cu increase with strain rate except that there is no monotonic relation between the strength and strain rate for specimens under uni- axial strain loading. Moreover, the strength and ductility of specimens under uniaxial strain loading are lower than those under uniaxial stress loading. The nucleation of voids at grain boundaries and their subsequent growth characterize the failure of specimens under uniaxial strain loading, while grain boundary sliding and necking dominate the failure of specimens under uniaxial stress loading. The rate dependent strength is mainly caused by the dynamic wave effect that limits dislocation motion, while combined twinning and slipping mechanism makes the material more ductile at higher strain rates.展开更多
Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K alon...Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K along the normal direction.The microstructure was measured by optical microscopy,electron back-scattering diffraction,transmission electron microscopy and X-ray diffractometry.The results showed that Mg-7Gd-5Y-1.2Nd-0.5Zr alloy had the positive strain rate strengthening effect and thermal softening effect at high temperature.The solid solution of Gd and Y atoms in Mg-7Gd-5Y-1.2Nd-0.5Zr alloy reduced the asymmetry of α-Mg crystals and changed the critical shear stress of various deformation mechanisms.The main deformation mechanisms were prismatic slip and pyramidal(a)slip,{102}tension twinning,and dynamic recrystallization caused by local deformation such as particle-stimulated nucleation.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.展开更多
The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compr...The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compression tests were carried out with Instron 8874 test machine, while dynamic compression tests were performed with the split Hopkinson pressure bar (SHPB) which was installed with heating device and synchro- assembly system. The dynamic mechanical behaviors tests of TC17 were carded out from room temperature to 800 ℃ at intervals of 200 ℃ and at high sWain rates (5 500-1 9200 s-l). The stress-strain curves considering temperature-sWain rate coupling actions were obtained. The Johnson-Cook constitutive model was developed through data fitting of the stress-sWain curves. The material constants in the developed constitutive model can be determined using isothermal and adiabatic stress-strain curves at different strain rates. The Johnson-Cook constitutive model provided satisfied prediction of the plastic flow stress for TC17 alloy.展开更多
The tensile behaviour of near a Ti3Al2.5 V alloy,conceived for applications in aerospace and automotive engineering,is characterized from quasi-static to high strain rates.The material is found to present noticeable s...The tensile behaviour of near a Ti3Al2.5 V alloy,conceived for applications in aerospace and automotive engineering,is characterized from quasi-static to high strain rates.The material is found to present noticeable strain rate sensitivity.The dynamic true strain rate in the necking cross-section reaches values up to ten times higher than the nominal strain rate.It is also observed that beyond necking the dynamic true stress-strain curves present limited rate dependence.The experimental results at different strain rates are used to determine a suitable constitutive model for finite element simulations of the dynamic tensile tests.The model predicts the experimentally macroscopic force-time response,true stress-strain response and effective strain rate evolution with good agreement.展开更多
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ...High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.展开更多
During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting pro...During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature.展开更多
The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- cont...The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- controlled testing system considering the loading rate as a variable. The mechanical properties of limestone such as the stress-strain curve, variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 10à5 to 1.1 10à1 sà1. (1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 10à5 to 1.1 10à4 sà1 at 700 °C as well as a downward trend was shown from 1.1 10à4 to 1.1 10à1 sà1 with the rise of the strain rate. (2) The peak strain increased from 1.1 10à5 to 1.1 10à4 sà1, however, there was no obvious changes shown for the peak strain of limestone from 1.1 10à4 to 1.1 10à1 sà1. These results can provide valuable references for the rock blasting effect and design of mine.展开更多
The influence of strain-rate on the room temperature mechanical properties of Dual-Phase and Transformation Induced Plasticity (TRIP) steels was investigated.The results showed that both plastic strain,and strength pr...The influence of strain-rate on the room temperature mechanical properties of Dual-Phase and Transformation Induced Plasticity (TRIP) steels was investigated.The results showed that both plastic strain,and strength properties increased with increasing strain rates at high strain rates.At strain rates lower than approximateil 1s-1 the properties no longer have an advantageous proportionality to strain rate and remain strain rate neutral.Possible explanations are offered for trends exhibited,in terms of thermal and athermal considerations,in relation to the respective microstructures of the two steels.展开更多
Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dyna...Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dynamic recrystallization (DRX) developed mainly at grain boundaries at lower strain rate (0.1-1 s^-1), while in the case of higher strain rate (10-50 s^-1), DRX occurred extensively both at twins and grain boundaries at all temperature range, especially at temperature lower than 350 ℃, which resulted in a more homogeneous microstructure than that under other deformation conditions. The DRX extent determines the hot workability of the workpiece, therefore, hot deformation at the strain rate of 10-50 s^-1 and in the temperature range of 250-350 ℃ was desirable for ZK60 alloy. Twin induced DRX during high strain rate compression included three steps. Firstly, twins with high dislocation subdivided the initial grain, then dislocation arrays subdivided the twins into subgrains, and after that DRX took place with a further increase of strain.展开更多
Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup&g...Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup> to 5.21×10<sup>-1</sup> s<sup>-1</sup>. The maximum total elongation of 228 % is obtained at a strain rate of 2.08×10<sup>-1</sup> s<sup>-1</sup>. The strain rate se nsitivity exponent (m) higher than 0.3, is observed when the strain rate is high er than 10<sup>-1</sup> s<sup>-1</sup> at 525℃. Increasing the test temperature to 540℃, the maximum total elongation exceeding 195% is achieved at a higher strain rate of 5.21×10<sup>-1</sup> s<sup>-1</sup> than that at 525℃. SiC in AZ31/SiCp composite ca n fine the matrix grain size. Filament is observed on the fracture surface of th e specimens showing superplasticity.展开更多
The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinso...The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period.展开更多
The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^...The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^-1 were investigated.The rolled AZ91 magnesium alloy possesses excellent superplasticity with the maximum elongation of 455% at 623 K and a strain rate of 10-3 s-1,and its strain rate sensitivity m is high up to 0.64.The dominant deformation mechanism responsible for the high strain rate superplasticity is still grain boundary sliding(GBS),and the dislocation creep mechanism is considered as the main accommodation mechanism.展开更多
The Al−Mg alloy with high Mg addition(Al−9.2Mg−0.8Mn−0.2Zr-0.15Ti,in wt.%)was subjected to different passes(1,2 and 4)of high strain rate rolling(HSRR),with the total thickness reduction of 72%,the rolling temperature...The Al−Mg alloy with high Mg addition(Al−9.2Mg−0.8Mn−0.2Zr-0.15Ti,in wt.%)was subjected to different passes(1,2 and 4)of high strain rate rolling(HSRR),with the total thickness reduction of 72%,the rolling temperature of 400℃and strain rate of 8.6 s^(−1).The microstructure evolution was studied by optical microscope(OM),scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscope(TEM).The alloy that undergoes 2 passes of HSRR exhibits an obvious bimodal grain structure,in which the average grain sizes of the fine dynamic recrystallization(DRX)grains and the coarse non-DRX regions are 6.4 and 47.7mm,respectively.The high strength((507±9)MPa)and the large ductility((24.9±1.3)%)are obtained in the alloy containing the bimodal grain distribution.The discontinuous dynamic recrystallization(DDRX)mechanism is the prominent grain refinement mechanism in the alloy subjected to 2 passes of HSRR.展开更多
Tensile mechanical properties of 1.6Si-1.58Mn-0.195C TRIP (transformation-induced plasticity) steels under high strain rate and effects of DP (dual-phase) treatments were studied and compared to the quasi-static tensi...Tensile mechanical properties of 1.6Si-1.58Mn-0.195C TRIP (transformation-induced plasticity) steels under high strain rate and effects of DP (dual-phase) treatments were studied and compared to the quasi-static tensile behavior. The results show that the increasing of strain rate leads to increasing in their strengths and decreasing in the uniform elongation remarkably. Because the stable retained austenite in TRIP steel can transform to martensite during tensile testing and the material exhibits excellent characteristic of transformation induced plasticity, the plastic deformation behavior is evidently improved and the combination of strength and elongation is superior to that of dual-phase steel, although its strength is smaller than that of DP steel. However, DP treated steel shown lower elongation under dynamic tension in spite of higher strength. A model was proposed to explain the excellent elongation rate of TRIP steel compared with DP steel on the basis of SEM analysis and the strength of the components in microstructure.展开更多
In this paper,the superplastic characteristics of the beta-SiC whisker reinforced 2024aluminum composite, fabricated by squeeze casting and hot-rolling after extrusion were investigated. The compsite had a fine grain ...In this paper,the superplastic characteristics of the beta-SiC whisker reinforced 2024aluminum composite, fabricated by squeeze casting and hot-rolling after extrusion were investigated. The compsite had a fine grain size of about 2μm, and exhibited a strain rate sensitivity of about 0.35 and a maximum elongation of 350% at an initial strain rate of 1.1×10-1s-1 at 803K. In addition, the superplastic deformation mechanisme of the composite were also examined.展开更多
Static recrystallization of a high strain rate compressed Mg-1 Zn(wt.%)alloy was investigated using electron backscattered diffraction(EBSD).A novel 53°1010 structure was observed in the as-deformed alloy,which s...Static recrystallization of a high strain rate compressed Mg-1 Zn(wt.%)alloy was investigated using electron backscattered diffraction(EBSD).A novel 53°1010 structure was observed in the as-deformed alloy,which showed a{1012}-{1012}double twin relationship with the matrix.When the as-deformed alloy was annealed at 200°C,the{1011}compression twins and{1011}-{1012}double twins showed a higher priority to recrystallize.In addition,the coarse{1012}tension twins and their inner double twins were preferentially to recrystallize,while the lenticular tension twins had little impact on the recrystallization.Therefore,obtaining more compression twins or coarse twins instead of lenticular tension twins can be an effective approach to manipulate recrystallization process in deformed Mg alloys.展开更多
The relationships between microstructure of 0.195C-1.6Si-1.58 Mn TRIP steel and its dynamic mechanical properties at high strain rate were investigated.The effect of microstructures on dynamic properties was discussed...The relationships between microstructure of 0.195C-1.6Si-1.58 Mn TRIP steel and its dynamic mechanical properties at high strain rate were investigated.The effect of microstructures on dynamic properties was discussed and the comparison with its static mechanical properties was also presented.The specimens of TRIP steel via three heat treatment techniques exhibit different morphological structures,responsible for their dynamic mechanical performances.The dynamic tensile testing was performed on self-made pneumatic tensile impact tester.The results showed that the size,volume fraction,morphology and distribution of retained austenite all affect the final mechanical properties at high strain rate.Among them,the second phase(retained austenite + bainite) with net structure severely decreases the elongation of TRIP steel in spite of the fact that it enhances strength because it restrains ferrite deformation.In order to obtain the excellent combination of strength and elongation,rational matching of morphology,size and volume fraction of several phases in TRIP steel can be obtained via proper heat treatment techniques.展开更多
基金The authors would like to thank Professor Kui Zhang,Beijing General Research Institute for Nonferrous Metal,for providing EW75 magnesium alloy for this work and acknowledge the funding from the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.17KJD430006)Scientific and Technological Innovation Team Foundation of Wuxi Institute of Technology(No.30593118001)Scientific Research Project of Wuxi Institute of Technology(No.ZK201901).The help of EBSD experiment provided by Yukyung Shin from Helmholtz-Zentrum Geesthacht is gratefully acknowledged.
文摘The dynamic tensile properties and microstructural evolution of an extruded EW75 magnesium alloy deformed at ambient temperature and different high strain rates(from 1000 to 3000 s^(-1))along extrusion direction(ED)were investigated by Split Hopkinson Tension Bar(SHTB).The corresponding deformation mechanisms,texture evolution and microstructure changes were analyzed by optical microscope(OM),electron backscatter diffraction(EBSD)and transmission electron microscope(TEM).The results show that the extruded EW75 magnesium alloy along ED exhibits a conventional positive strain rate sensitivity that the dynamic flow stresses increase with in creasing strain rate.Texture measurements show that after dynamic tension,the initial weak texture of extruded EW75 magnesium alloy tansforms to a relatively strong<10-10>//ED texture with increasing strain rates.The microstructural analysis demonstrates that dislocation motion are main deformatin mode to accommodate dynamic tensile deformation at high strain rates.In addition,the interactions of dislocation-dislocation and dislocation-second phase lead to the in crease of flow stress and strain hardening with increasing strain rate.
基金The authors would like to acknowledge the financial support from the National Key Basic Research Program(973 Program),Project(2013CB632205).
文摘For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.
文摘How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and unloading constitutive relation presumed, the positions of the sensors embedded, the interactions between loading waves and unloading waves. For the split Hopkinson pressure bar (SHPB) technique, the assumption of one-dimensional stress wave propagation and the assumption of stress uniformity along the specimen should be satisfied. When the larger diameter bars are employed, the wave dispersion effects should be considered, including the high frequency oscillations, non-uniform stress distribution across the bar section, increase of rise time, and amplitude attenuation. The stress uniformity along the specimen is influenced by the reflection times in specimen, the wave impedance ratio of the specimen and the bar, and the waveform.
基金financial support from Australian Research Council(ARC)Centre of Excellence for Design in Light Metals
文摘Molecular dynamics simulations of nanocrystalline Cu with average grain sizes of 3.1 nm, 6.2 nm, 12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 10^8 s^-1, 10^9 S^-1 and 10^10 s^-1 are performed to study the combined grain size, strain rate and loading condition effects on mechanical properties. It is found that the strength of nanocrystalline Cu increases as grain size increases regardless of loading condition. Both the strength and ductility of nanocrystalline Cu increase with strain rate except that there is no monotonic relation between the strength and strain rate for specimens under uni- axial strain loading. Moreover, the strength and ductility of specimens under uniaxial strain loading are lower than those under uniaxial stress loading. The nucleation of voids at grain boundaries and their subsequent growth characterize the failure of specimens under uniaxial strain loading, while grain boundary sliding and necking dominate the failure of specimens under uniaxial stress loading. The rate dependent strength is mainly caused by the dynamic wave effect that limits dislocation motion, while combined twinning and slipping mechanism makes the material more ductile at higher strain rates.
基金National Natural Science Foundation of China(Nos.51571145,51404137)City of Ningbo"science and technology innovation 2025"major special project(new energy vehicle lightweight magnesium alloy material precision forming technology)(No.2018B10045).
文摘Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K along the normal direction.The microstructure was measured by optical microscopy,electron back-scattering diffraction,transmission electron microscopy and X-ray diffractometry.The results showed that Mg-7Gd-5Y-1.2Nd-0.5Zr alloy had the positive strain rate strengthening effect and thermal softening effect at high temperature.The solid solution of Gd and Y atoms in Mg-7Gd-5Y-1.2Nd-0.5Zr alloy reduced the asymmetry of α-Mg crystals and changed the critical shear stress of various deformation mechanisms.The main deformation mechanisms were prismatic slip and pyramidal(a)slip,{102}tension twinning,and dynamic recrystallization caused by local deformation such as particle-stimulated nucleation.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.
基金Funded by the National Basic Research Program of China(No.2009CB724401)the Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment(No.2012ZX04003-041)
文摘The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compression tests were carried out with Instron 8874 test machine, while dynamic compression tests were performed with the split Hopkinson pressure bar (SHPB) which was installed with heating device and synchro- assembly system. The dynamic mechanical behaviors tests of TC17 were carded out from room temperature to 800 ℃ at intervals of 200 ℃ and at high sWain rates (5 500-1 9200 s-l). The stress-strain curves considering temperature-sWain rate coupling actions were obtained. The Johnson-Cook constitutive model was developed through data fitting of the stress-sWain curves. The material constants in the developed constitutive model can be determined using isothermal and adiabatic stress-strain curves at different strain rates. The Johnson-Cook constitutive model provided satisfied prediction of the plastic flow stress for TC17 alloy.
文摘The tensile behaviour of near a Ti3Al2.5 V alloy,conceived for applications in aerospace and automotive engineering,is characterized from quasi-static to high strain rates.The material is found to present noticeable strain rate sensitivity.The dynamic true strain rate in the necking cross-section reaches values up to ten times higher than the nominal strain rate.It is also observed that beyond necking the dynamic true stress-strain curves present limited rate dependence.The experimental results at different strain rates are used to determine a suitable constitutive model for finite element simulations of the dynamic tensile tests.The model predicts the experimentally macroscopic force-time response,true stress-strain response and effective strain rate evolution with good agreement.
基金supported by the National Natural Science Foundation of China(Nos.51839009 and 52027814)the Natural Science Foundation of Hubei Province(No.2023AFB589).
文摘High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.
基金supported by the National High Technology Research and Development Program of China(2014AA041504)the National Natural Science Foundation of China(51605161)
文摘During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2011QNB05)the National Basic Research Program of China (No. 2007CB209400)+2 种基金the National Natural Science Foundation of China (Nos. 51074166 and 51104128)the Research Project for Ministry of Housing and Urban-Rural Development of China (No. 2011-K3-5)the Innovation Project of Graduate Students in Jiangsu Province (No. CX09B_108Z)
文摘The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- controlled testing system considering the loading rate as a variable. The mechanical properties of limestone such as the stress-strain curve, variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 10à5 to 1.1 10à1 sà1. (1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 10à5 to 1.1 10à4 sà1 at 700 °C as well as a downward trend was shown from 1.1 10à4 to 1.1 10à1 sà1 with the rise of the strain rate. (2) The peak strain increased from 1.1 10à5 to 1.1 10à4 sà1, however, there was no obvious changes shown for the peak strain of limestone from 1.1 10à4 to 1.1 10à1 sà1. These results can provide valuable references for the rock blasting effect and design of mine.
文摘The influence of strain-rate on the room temperature mechanical properties of Dual-Phase and Transformation Induced Plasticity (TRIP) steels was investigated.The results showed that both plastic strain,and strength properties increased with increasing strain rates at high strain rates.At strain rates lower than approximateil 1s-1 the properties no longer have an advantageous proportionality to strain rate and remain strain rate neutral.Possible explanations are offered for trends exhibited,in terms of thermal and athermal considerations,in relation to the respective microstructures of the two steels.
基金Project (14JJ6047) supported by the Natural Science Foundation of Hunan Province,ChinaProject (51274092) supported by the National Natural Science Foundation of ChinaProject (20120161110040) supported by the Doctoral Program of Higher Education ofChina
文摘Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dynamic recrystallization (DRX) developed mainly at grain boundaries at lower strain rate (0.1-1 s^-1), while in the case of higher strain rate (10-50 s^-1), DRX occurred extensively both at twins and grain boundaries at all temperature range, especially at temperature lower than 350 ℃, which resulted in a more homogeneous microstructure than that under other deformation conditions. The DRX extent determines the hot workability of the workpiece, therefore, hot deformation at the strain rate of 10-50 s^-1 and in the temperature range of 250-350 ℃ was desirable for ZK60 alloy. Twin induced DRX during high strain rate compression included three steps. Firstly, twins with high dislocation subdivided the initial grain, then dislocation arrays subdivided the twins into subgrains, and after that DRX took place with a further increase of strain.
文摘Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup> to 5.21×10<sup>-1</sup> s<sup>-1</sup>. The maximum total elongation of 228 % is obtained at a strain rate of 2.08×10<sup>-1</sup> s<sup>-1</sup>. The strain rate se nsitivity exponent (m) higher than 0.3, is observed when the strain rate is high er than 10<sup>-1</sup> s<sup>-1</sup> at 525℃. Increasing the test temperature to 540℃, the maximum total elongation exceeding 195% is achieved at a higher strain rate of 5.21×10<sup>-1</sup> s<sup>-1</sup> than that at 525℃. SiC in AZ31/SiCp composite ca n fine the matrix grain size. Filament is observed on the fracture surface of th e specimens showing superplasticity.
基金supported by the National Key R&D Program of China(No.2017YFC0602902)the National Natural Scienceof China(Nos.41807259 and 51874350)+2 种基金the Fundamental Research Funds for the Central Universities of Central South University(No.2016zztx096)The support provided by the China Scholarship Council(CSC)during the visit of the first author toécole Polytechnique de Montréal(Student ID:201706370039)the materials supply by Fan Kou lead-zinc mine of Shenzhen Zhongjin Lingnan Non-ferrous metal Company Limited。
文摘The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period.
基金supported by the National Natural Science Foundation of China(No.50674067).
文摘The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^-1 were investigated.The rolled AZ91 magnesium alloy possesses excellent superplasticity with the maximum elongation of 455% at 623 K and a strain rate of 10-3 s-1,and its strain rate sensitivity m is high up to 0.64.The dominant deformation mechanism responsible for the high strain rate superplasticity is still grain boundary sliding(GBS),and the dislocation creep mechanism is considered as the main accommodation mechanism.
文摘The Al−Mg alloy with high Mg addition(Al−9.2Mg−0.8Mn−0.2Zr-0.15Ti,in wt.%)was subjected to different passes(1,2 and 4)of high strain rate rolling(HSRR),with the total thickness reduction of 72%,the rolling temperature of 400℃and strain rate of 8.6 s^(−1).The microstructure evolution was studied by optical microscope(OM),scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscope(TEM).The alloy that undergoes 2 passes of HSRR exhibits an obvious bimodal grain structure,in which the average grain sizes of the fine dynamic recrystallization(DRX)grains and the coarse non-DRX regions are 6.4 and 47.7mm,respectively.The high strength((507±9)MPa)and the large ductility((24.9±1.3)%)are obtained in the alloy containing the bimodal grain distribution.The discontinuous dynamic recrystallization(DDRX)mechanism is the prominent grain refinement mechanism in the alloy subjected to 2 passes of HSRR.
基金the financial supports of Shanghai Development Foun-dation of Auto Industry and the National Natural Science Foundation of China (No. 50171038).
文摘Tensile mechanical properties of 1.6Si-1.58Mn-0.195C TRIP (transformation-induced plasticity) steels under high strain rate and effects of DP (dual-phase) treatments were studied and compared to the quasi-static tensile behavior. The results show that the increasing of strain rate leads to increasing in their strengths and decreasing in the uniform elongation remarkably. Because the stable retained austenite in TRIP steel can transform to martensite during tensile testing and the material exhibits excellent characteristic of transformation induced plasticity, the plastic deformation behavior is evidently improved and the combination of strength and elongation is superior to that of dual-phase steel, although its strength is smaller than that of DP steel. However, DP treated steel shown lower elongation under dynamic tension in spite of higher strength. A model was proposed to explain the excellent elongation rate of TRIP steel compared with DP steel on the basis of SEM analysis and the strength of the components in microstructure.
文摘In this paper,the superplastic characteristics of the beta-SiC whisker reinforced 2024aluminum composite, fabricated by squeeze casting and hot-rolling after extrusion were investigated. The compsite had a fine grain size of about 2μm, and exhibited a strain rate sensitivity of about 0.35 and a maximum elongation of 350% at an initial strain rate of 1.1×10-1s-1 at 803K. In addition, the superplastic deformation mechanisme of the composite were also examined.
基金financially supported by National Natural Science Foundation of China(No.51701121,No.51825101)Shanghai Sailing Program(17YF1408800)+2 种基金Science and Technology Commission of Shanghai Municipality(No.18511109302)Qinghai Provincial Science and Technology Key Program(No.2018-GX-A1)Startup Fund for Youngman Research at SJTU(No.18X100040022)
文摘Static recrystallization of a high strain rate compressed Mg-1 Zn(wt.%)alloy was investigated using electron backscattered diffraction(EBSD).A novel 53°1010 structure was observed in the as-deformed alloy,which showed a{1012}-{1012}double twin relationship with the matrix.When the as-deformed alloy was annealed at 200°C,the{1011}compression twins and{1011}-{1012}double twins showed a higher priority to recrystallize.In addition,the coarse{1012}tension twins and their inner double twins were preferentially to recrystallize,while the lenticular tension twins had little impact on the recrystallization.Therefore,obtaining more compression twins or coarse twins instead of lenticular tension twins can be an effective approach to manipulate recrystallization process in deformed Mg alloys.
基金Item Sponsored by National Natural Science Foundation of China(50171038)Shanghai Development Foundation of Auto Industry
文摘The relationships between microstructure of 0.195C-1.6Si-1.58 Mn TRIP steel and its dynamic mechanical properties at high strain rate were investigated.The effect of microstructures on dynamic properties was discussed and the comparison with its static mechanical properties was also presented.The specimens of TRIP steel via three heat treatment techniques exhibit different morphological structures,responsible for their dynamic mechanical performances.The dynamic tensile testing was performed on self-made pneumatic tensile impact tester.The results showed that the size,volume fraction,morphology and distribution of retained austenite all affect the final mechanical properties at high strain rate.Among them,the second phase(retained austenite + bainite) with net structure severely decreases the elongation of TRIP steel in spite of the fact that it enhances strength because it restrains ferrite deformation.In order to obtain the excellent combination of strength and elongation,rational matching of morphology,size and volume fraction of several phases in TRIP steel can be obtained via proper heat treatment techniques.