期刊文献+
共找到19,248篇文章
< 1 2 250 >
每页显示 20 50 100
Product Development of High Strength and Toughness Spring Flat Steel
1
作者 Jianxin Wang Chunhui Zhang 《Frontiers of Metallurgical Industry》 2024年第1期15-18,共4页
With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are desi... With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are designed to meet the requirements of high strength and high toughness of spring flat steel,through the test,the product surface quality and internal quality all meet the national standards,the performance indicators to meet user requirements. 展开更多
关键词 spring flat steel mechanical properties high strength high toughness
下载PDF
Designing new low alloyed Mg-RE alloys with high strength and ductility via high-speed extrusion 被引量:2
2
作者 Jinshu Xie Zhi Zhang +6 位作者 Shujuan Liu Jinghuai Zhang Jun Wang Yuying He Liwei Lu Yunlei Jiao Ruizhi Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期82-91,共10页
Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial... Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial AZ31 alloy in extrudability,but also have superior mechanical properties,especially in terms of yield strength(YS).The excellent extrudability is related to less coarse second-phase particles and high initial melting point of the two as-cast alloys.The high strength-ductility mainly comes from the formation of fine grains,nano-spaced submicron/nano precipitates,and weak texture.Moreover,it is worth noting that the YS of the two alloys can maintain above 160 MPa at elevated temperature of 250°C,significantly higher than that of AZ31 alloy(YS:45 MPa).The Zn/Ca solute segregation at grain boundaries,the improved heat resistance of matrix due to addition of RE,and the high melting points of strengthening particles(Mn,MgZn_(2),and Mg-Zn-RE/Mg-Zn-RE-Ca)are mainly responsible for the excellent high-temperature strength. 展开更多
关键词 magnesium alloys high-speed extrusion high strength high ductility solute segregation
下载PDF
Properties of Sustainable High Strength Concrete with Waste Copper Slag
3
作者 JAGAN Sivamani KARUPASAMY Narayanan +3 位作者 DHARMARAJ R THIYANESWARAN Periyasamy KARTHIKEYAN Selvarajan NAVANEETHAN Kumaravalasu Subramaniam 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期815-822,共8页
The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and dur... The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and durability properties.The experimental results indicate that replacing copper slag above 50%affects the performance characteristics of the concrete due to its high angularity and lower water absorption characteristics.The strength of concrete with 50%copper slag is improved by 5.6%,whereas the strength of concrete with 100%copper slag is reduced by 2.75%at 28 days.However,increased curing to 90days improves the strength of the former by 7.16%and reduces the latter by only 0.23%.The water absorption,porosity,and rapid chloride penetration of the concrete mixtures with 100%copper slag are increased by 10.44%,13.20%,and 19.56%compared to control concrete.Micro-structural investigations through SEM infer higher replacement of copper results in higher void formation due to its reduced water absorption. 展开更多
关键词 copper slag high strength concrete strength water absorption POROSITY
下载PDF
Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques
4
作者 Mustafa Sami Abdullatef Faten NAlzubaidi +1 位作者 Anees Al-Tamimi Yasser Ahmed Mahmood 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2083-2107,共25页
The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of ... The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure.The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios(R?1).Artificial neural networks(ANN),adaptive neuro-fuzzy inference systems(ANFIS),support-vector machines(SVM),a random forest model(RF),and an extreme-gradient tree-boosting model(XGB)are trained using numerical and experimental input data obtained from fatigue tests based on a relatively low number of stress measurements.In particular,the coefficients of the traditional force law formula are found using relevant numerical methods.It is shown that,in comparison to traditional approaches,the neural network and neuro-fuzzy models produce better results,with the neural network models trained using the boosting iterations technique providing the best performances.Building strong models from weak models,XGB helps to predict fatigue life by reducing model partiality and variation in supervised learning.Fuzzy neural models can be used to predict the fatigue life of alloys more accurately than neural networks and traditional methods. 展开更多
关键词 Fatigue life high strength aluminum alloy 2090-T83 NEURO-FUZZY tree boosting model neural networks adaptive neuro-fuzzy inference systems random forest support vector machines
下载PDF
Application of Hot Forming High Strength Steel Parts on Car Body in Side Impact 被引量:19
5
作者 SUN Hongtu HU Ping +3 位作者 MA Ning SHEN Guozhe LIU Bo ZHOU Dinglu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期252-256,共5页
Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. Howeve... Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. However, the lightweight structures must show the improved capability for structural rigidity and crash energy absorption. Advanced high strength steels are attractive materials to achieve higher strength for energy absorption and reduce weight of vehicles. Currently, many research works focus on component level axial crash testing and simulation of high strength steels. However, the effects of high strength steel parts to the impact of auto body are not considered. The goal of this research is to study the application of hot forming high strength steel(HFHSS) in order to evaluate the potential using in vehicle design for lightweight and passive safety. The performance of HFHSS is investigated by using both experimental and analytical techniques. In particular, the focus is on HFHSS which may have potential to enhance the passive safety for lightweight auto body. Automotive components made of HFHSS and general high strength steel(GHSS) are considered in this study. The material characterization of HFHSS is carried out through material experiments. The finite element method, in conjunction with the validated model is used to simulate the side impact of a car with GHSS and HFHSS parts according to China New Car Assessment Programme(C-NCAP) crash test. The deformation and acceleration characteristics of car body are analyzed and the injuries of an occupant are calculated. The results from the simulation analyses of HFHSS are compared with those of GHSS. The comparison indicates that the HFHSS parts on car body enhance the passive safety for the lightweight car body in side impact. Parts of HFHSS reduce weight of vehicle through thinner thickness offering higher strength of parts. Passive safety of lightweight car body is improved through reduction of crash deformation on car body by the application of HFHSS parts. The experiments and simulation are conducted to the HFHSS parts on auto body. The results demonstrate the feasibility of the application of HFHSS materials on automotive components for improved capability of passive safety and lightweight. 展开更多
关键词 hot forming high strength steel LIGHTWEIGHT side impact car body
下载PDF
Tensile properties of high strength cast Mg alloys at room temperature:A review 被引量:12
6
作者 Fu Penghuai Peng Liming +2 位作者 Jiang Haiyan Ding Wenjiang Zhai Chunquan 《China Foundry》 SCIE CAS 2014年第4期277-286,共10页
As most Mg alloy products are now produced by a casting process,the development of high strength cast Mg alloys can promote their further applications and has already become one of the hot research areas of Mg alloys.... As most Mg alloy products are now produced by a casting process,the development of high strength cast Mg alloys can promote their further applications and has already become one of the hot research areas of Mg alloys.The present paper reviews the strengthening mechanisms,tensile properties and modification results of commercial high strength cast Mg alloys;as well as the development of Mg-Gd,Mg-Nd and Mg-Sn based alloys.It concludes that precipitation strengthening is the most important strengthening mechanism in high strength cast Mg alloys,which contributes more than 60%of yield strength in solution&peak-aged(T6)cast Mg alloys.For the yield strength,the alloys follow the sequence of Mg-Gd(Y)-Ag>Mg-Gd(Y)-Zn>Mg-Gd-Y/Sm/Nd>Mg-Y-Nd(WE series)>ZK61>Mg-Nd>AZ91>Mg-Sn.Mg-Gd(Y)-Ag based alloys are the strongest cast Mg alloys at present,followed by Mg-Gd(Y)-Zn based alloys.The high yield strengths of Mg-Gd(Y)-Ag and Mg-Gd(Y)-Zn cast alloys are due to the co-precipitation of basal and prismatic meta-stable phases. 展开更多
关键词 research development high strength Mg cast alloy PRECIPITATE
下载PDF
Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels 被引量:12
7
作者 Jin-yan Zhong Min Sun +2 位作者 Da-bo Liu Xiao-gang Li Tian-qi Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第3期282-289,共8页
The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steel... The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steels remain martensite structures and have anodic dissolution characteristic with an increase of chromium content. There is no typical passive region on the polarization curves of an ultra high strength stainless steel, AerMet 100 steel, and 300M steel. However, chromium improves the corrosion resistance of the stainless steel remarkably. It has the slowest corrosion rate in the salt spray test, one order of magnitude less than that of AerMet 100 and 300M steels. With the increase of chromium content, the polarization resistance becomes larger, the corrosion potential shifts towards the positive direction with a value of 545 mV, and the corrosion current density decreases in electrochemical measures in 3.5wt% NaCl solutions. Because of the higher content of chromium, the ultra high strength stainless steel has a better corrosion resistance than AerMet 100 and 300M steels. 展开更多
关键词 ultra high strength steel corrosion rate CHROMIUM electrochemical behavior
下载PDF
Effect of microstructure on the low temperature toughness of high strength pipeline steels 被引量:10
8
作者 Yan-ping Zeng Peng-yu Zhu Ke Tong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第3期254-261,共8页
Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The eff... Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries. 展开更多
关键词 high strength pipe steels microstrucmre low temperature TOUGHNESS influencing factors
下载PDF
Microstructure investigation of a new type super high strength aluminum alloy at different heat-treated conditions 被引量:10
9
作者 ZENGYu YINZhimin +1 位作者 ZHUYuanzhi CUIJianzhong 《Rare Metals》 SCIE EI CAS CSCD 2004年第4期377-384,共8页
As a structural material with low density and high strength, super-highstrength aluminum alloys have a future for wide application. However, its poor stress corrosionresistance (SCC) restricts further development. In ... As a structural material with low density and high strength, super-highstrength aluminum alloys have a future for wide application. However, its poor stress corrosionresistance (SCC) restricts further development. In present, retrogression and re-ageing (RRA)treatment, which can improve both strength and SCCR of 7XXX series alloy, is a best method to solvethis problem. The effect of RRA treatment on the microstructure evolution of a new type lowfrequency electric-magnetic casting Al-9.OZn-2.45Mg-2.2Cu-0.15Zr alloy was investigated using DSCand TEM technologies. The results show that the typical microstructure of the alloy at T6 conditionis characterized by both fine eta' and GP zone homogeneously distributed in the matrix andcontinuous r) particles occurred on the grain-boundary. After RRA treatment, the matrixprecipitations are mainly fine and dispersed eta' and eta phases, being coarser and more stable thanthat from T6 temper. While, the grain-boundary microstructure is very close to that resulting fromT73 temper. High retrogression temperature and long retrogression time leads to a more stablemicrostructure after re-ageing. 展开更多
关键词 MICROSTRUCTURE super high strength Al-Zn-Mg-Cu alloy heat treatedcondition
下载PDF
Microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels 被引量:7
10
作者 Zhi-gang Wang A i-min Zhao +3 位作者 Zheng-zhi Zhao Jie-yun Ye Di Tang Guo-sen Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第10期915-922,共8页
The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tens... The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile test. The results show that Si can promote the transformation of austenite (γ) to ferrite (α), enlarge the (α+γ) region, and increase the aging stability of martensite by inhibiting carbide precipitation. Adding Cr leads to the formation of retained austenite and martensite/austenite (M/A) constituents, as well as the decomposi- tion of martensite during the overaging stage. Both of the steels show higher initial strain-hardening rates and two-stage strain-hardening characteristics. The C-Mn-Si-Nb steel shows the higher strain-hardening rate than the C-Mn-Cr-Nb steel in the first stage; however, there is no significant difference in the second stage. Although the tensile strength and elongation of the two steels both exceed 1000 MPa and 15%, respectively, the comprehensive mechanical properties of the C-Mn-Si-Nb steel are superior. 展开更多
关键词 high strength steel dual-phase steel alloying elements microstructure mechanical properties sWain hardening
下载PDF
Experimental study on the seismic behavior of high strength concrete fi lled double-tube columns 被引量:12
11
作者 Qian Jiaru Li Ningbo +1 位作者 Ji Xiaodong Zhao Zuozhou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期47-57,共11页
To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column sp... To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1. 展开更多
关键词 high strength concrete fi lled double-tube(CFDT)column seismic behavior area ratio of the square steel tube width-to-thickness ratio of the square steel tube axial force ratio quasi-static test
下载PDF
Delayed Fracture Behavior of CrMo-Type High Strength Steel Containing Titanium 被引量:6
12
作者 HUIWei-jun DONGHan +3 位作者 WENGYu-qing WANGMao-qiu CHENSi-lian SHIJie 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2005年第1期43-49,共7页
The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of te... The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of tensile strength was obtained.The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution.The experimental results showed that with higher strength,the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes.The undissolved TiC is uniformly distributed as strong hydrogen traps,retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites,such as prior austenite and martensite lath boundaries in stress concentration area.Meanwhile,the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels.The characteristics of delayed fracture remain nearly the same with titanium addition. 展开更多
关键词 TITANIUM delayed fracture high strength steel CrMo steel
下载PDF
Ultra-high cycle fatigue behavior of high strength steel with carbide-free bainite/martensite complex microstructure 被引量:5
13
作者 Xue-xia Xu Yang Yu Wen-long Cui Bing-zhe Bai Jia-lin Gu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第3期285-292,共8页
The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrason... The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties. 展开更多
关键词 high strength steel ultra-high cycle fatigue BAINITE MARTENSITE fatigue behavior
下载PDF
Study on non-metallic inclusions in Al killed high strength alloy steel refined by high basicity and high Al_2O_3 content slag 被引量:10
14
作者 WANG Xinhua,JIANG Min and WANG Wanjun School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China 《Baosteel Technical Research》 CAS 2010年第S1期21-,共1页
Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time larg... Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions. 展开更多
关键词 non-metallic inclusion SPINEL SLAG high strength alloying steel refining fatigue
下载PDF
Experimental research on behavior of 460 MPa high strength steel I-section columns under cyclic loading 被引量:5
15
作者 Wang Jiaojiao Shi Gang Shi Yongjiu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期611-622,共12页
To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with di... To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases. 展开更多
关键词 high strength steel width-to-thickness ratio axial load ratio seismic behavior I-section column
下载PDF
Effect of microstructure on corrosion behavior of high strength martensite steel-A literature review 被引量:6
16
作者 Li Wang Chao-fang Dong +3 位作者 Cheng Man Ya-bo Hu Qiang Yu Xiao-gang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期754-773,共20页
The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of m... The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels.Pitting is the most common corrosion type of high strength stainless steels,which always occurs at weak area of passive film such as inclusions,carbide/intermetallic interfaces.Meanwhile,the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion.The precipitation,dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps,leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels.Yet,the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels.Finally,the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored. 展开更多
关键词 corrosion behavior high strength martensite steel MICROSTRUCTURE additive manufacturing
下载PDF
Internal Curing Using Water-releasing Material for High Strength Micro-expansive Concrete 被引量:5
17
作者 吕林女 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第3期510-513,共4页
Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this probl... Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated. 展开更多
关键词 water-releasing material high strength concrete expansive internal curing
下载PDF
Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy 被引量:13
18
作者 韩永全 韩蛟 +2 位作者 陈岩 姚青虎 王鹏 《China Welding》 CAS 2021年第3期7-11,共5页
The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-M... The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-MIG hybrid welding were analyzed.The stability of the hybrid welding process was evaluated by standard deviation analysis.The results show that with the increase of laser power,a large number of laser-induced plasma enters the arc column area,providing more conductive channels,which makes the heat of MIG arc more concentrated and the short circuit transition disappear.Due to the continuous effect of laser,the keyhole becomes a continuous electron emission source,and a stable cathode spot will be formed near the keyhole,which enhances the stability of MIG arc at the base current state.By using the method of standard deviation analysis,the voltage standard deviation of single MIG welding arc and laser-MIG hybrid arc within 4 seconds was calculated.The standard deviation of single MIG arc voltage was 1.05,and the standard deviation of MIG arc voltage in laser-MIG hybrid welding was 0.71–0.86,so the hybrid welding process was more stable. 展开更多
关键词 high strength aluminum alloy fiber laser-MIG hybrid welding arc behavior electrical signal
下载PDF
Influence of MB-value of Manufactured Sand on the Shrinkage and Cracking of High Strength Concrete 被引量:4
19
作者 王稷良 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期321-325,共5页
The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack ... The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable. 展开更多
关键词 manufactured sand methylene blue value high strength concrete anti-cracking SHRINKAGE
下载PDF
Investigation of Surface Damage in Forming of High Strength and Galvanized Steel Sheets 被引量:4
20
作者 Zhongqi Yu Yingke Hou +2 位作者 Haomin Jiang Xinping Chen Weigang Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期389-394,共6页
Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate... Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate. In this study, a special rectangular box was developed to investigate the behavior and characteristics of surface damage in sheet metal forming (SMF) processes. U-channel forming tests were conducted to study the effect of tool hardness on surface damage in the forming of high strength steels and galvanized steels (hot-dip galvanized and galvannealed steels). Experimental results indicate that sheet deformation mode influences the severity of surface damage in SMF and surface damage occurs easily at the regions where sheet specimen deforms under the action of compressive stress. Die corner is the position where surface damage initiates. For HSS sheet, surface damage is of major interest due to high forming pressure. The HSS and hot-dip galvanized steels show improved ability of damage-resistance with increased hardness of the forming tool. However, for galvannealed steel it is not the forming tool with the highest hardness value that performs best. 展开更多
关键词 Surface damage Sheet metal forming high strength steel Galvanized steel
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部