The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and dur...The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and durability properties.The experimental results indicate that replacing copper slag above 50%affects the performance characteristics of the concrete due to its high angularity and lower water absorption characteristics.The strength of concrete with 50%copper slag is improved by 5.6%,whereas the strength of concrete with 100%copper slag is reduced by 2.75%at 28 days.However,increased curing to 90days improves the strength of the former by 7.16%and reduces the latter by only 0.23%.The water absorption,porosity,and rapid chloride penetration of the concrete mixtures with 100%copper slag are increased by 10.44%,13.20%,and 19.56%compared to control concrete.Micro-structural investigations through SEM infer higher replacement of copper results in higher void formation due to its reduced water absorption.展开更多
Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined ...Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree.展开更多
Based on experiments, a computer program is developed. The calculated results agree well with the experimental results. The flexural behavior of T shaped high strength concrete members subjected to axial compression ...Based on experiments, a computer program is developed. The calculated results agree well with the experimental results. The flexural behavior of T shaped high strength concrete members subjected to axial compression and biaxial bending is studied. The main factors affecting the flexural behavior of T shaped high strength concrete members are loading angle, axial compression ratio and reinforcement ratio.展开更多
To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column sp...To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1.展开更多
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ...An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.展开更多
The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack ...The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable.展开更多
For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-s...For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-section beams with nine specimens confined by CFRP sheet in the plastic zone and three control beams were conducted up to failure under four-point bending test. The effectiveness of confining CFRP sheet on improving the flexural ductility of tmstrengthened T-section beams was studied. The parameters such as the width and the thickness of CFRP sheet and the type of T-section were analyzed. The experimental results show that ductility and rotation capacity of plastic hinge can be improved by the confinement of CFRP sheet, and the ductility indices increase with the increment of width and thickness of CFRP sheet. A plastic rotation model considering the width of CFRP sheet and the effect of flange of T-section beam is proposed on the basis of the model of BAKER, and the test results show a good agreement with the perdicted results. The relevant construction suggestions for seismic retrofitting design of beam-slabs system in cast-in-place framework structure are presented.展开更多
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre...The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.展开更多
The high strength concrete(HSC)was produced by partially replacingthe normal portland cement with special ground granulatedblast-furnace slag(GGBS)ranging up to 60/100. The effects of the GGBSon the flowabilityand mec...The high strength concrete(HSC)was produced by partially replacingthe normal portland cement with special ground granulatedblast-furnace slag(GGBS)ranging up to 60/100. The effects of the GGBSon the flowabilityand mechanical properties of HSC were studied. Thehydration process and microstructure char- acteristics wereinvestigated by X-ray diffraction(XRD)and scanning microscopy(SEM),respectively. The test results indicate that the GGBS has especiallysupplementary effect on water reducing and excellent property Ofbetter control of lump loss.展开更多
Efforts have been made to evaluate the influences of the addition of nanoparticles on the strength,durability and mineralogical changes of high strength concrete(HSC).Therefore,mixes were prepared for conventional con...Efforts have been made to evaluate the influences of the addition of nanoparticles on the strength,durability and mineralogical changes of high strength concrete(HSC).Therefore,mixes were prepared for conventional concrete mix(CCM)of M80 grade.Further,various mixes were prepared by replacing cementitious materials initially with 1%Nano-CaCO_(3)(NC),2%NC,3%NC in the CCM,and then 1%NC and Nano-SiO_(2)(NS)NS,2%NC and NS,3%NC and NS(NC and NS were in equal proportion)in the CCM.The developed concretes were then evaluated for mechanical properties,permeation characteristics,and mineralogical studies.From the studies,it is found that the concrete at 2%NCS possesses superior mechanical and superior permeation characteristics of all the mixes.A clear variation in the mineralogical structure with the addition of nanoparticles has been observed.展开更多
This paper studies the contribution of CFRP(carbon fiber-reinforced polymer)to the mechanical behavior of high strength concrete-filled square steel tube(HCFST)under biaxial eccentric compression.The new type of compo...This paper studies the contribution of CFRP(carbon fiber-reinforced polymer)to the mechanical behavior of high strength concrete-filled square steel tube(HCFST)under biaxial eccentric compression.The new type of composite member is composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes.The finite element analysis was made by ABAQUS on the behavior of high strength concrete filled square steel tubular columns with inner CFRP circular tube subjected to bi-axial eccentric loading.The results obtained from the finite element analysis were verified with the experimental results.In addition,the load-deflection curves in the whole process were calculated and analyzed,which can be divided into three segments:Elastic phase,plastic phase,descending phase.Based on the load-deflection curves,the stresses analysis on the core concrete,CFRP tube and steel tube were conducted.The confinement effect of the CFRP tube improves the ductility of HCFST-CFRP stub column.CFRP ratio and eccentricity affect the ultimate bearing capacity of HCFST stub column.Finally,a calculation formula of ultimate bearing capacity was proposed in the paper.展开更多
This paper presents the results of a series of studies on the influence of curing conditions on the strength development of high strength concrete. The 1-, 3-, 7-, 14- and 28-day strengths of four different mixes of G...This paper presents the results of a series of studies on the influence of curing conditions on the strength development of high strength concrete. The 1-, 3-, 7-, 14- and 28-day strengths of four different mixes of Grade 75 similar to 80 concrete, with or without pulverized fuel ash and/or condensed silica fume, under five different curing regimes were investigated. It is revealed that the curing conditions have significant influence on both the short term and long term strength development of the concrete and that concrete mixes of the same grade but containing different mineral admixtures show distinct favour for a curing regime. These results will be helpful for evaluating suitable curing methods for high strength concrete with different mix proportions.展开更多
To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens...To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.展开更多
This paper presents the results of four partially prestressed ultra-high strength concrete beams in flexure. The test results are used to evaluate the effects of prestressing tendon depth and area on flexure behavior ...This paper presents the results of four partially prestressed ultra-high strength concrete beams in flexure. The test results are used to evaluate the effects of prestressing tendon depth and area on flexure behavior of specimen beams. The test results indicate that: the cracking load,yielding load,peak load and stiffness postcracking of specimen beams are enhanced by reducing prestressing tendon depth or increasing prestressing tendon area, and the flexural ductility is improved by increasing prestressing tendon depth or reducing prestressing tendon area. The effect of complex reinforcement index considering the strength of the equivalence principle and the reinforcement position on loading levels under serviceability limit state,flexural strength and displacement ductility factor are studied. The influence coefficient of prestressing tendon kpis introduced in the complex reinforcement index. As the complex reinforcement index increases, the loading levels under serviceability limit state and flexural strength increases linearly,and the displacement ductility factor decreases linearly. The test results also verify the conventional beam flexural theory based on the plane cross-section assumption for predicting ultimate flexural strength of partially prestressed ultra-high strength concrete beams is valid. After the introduction of the coefficient kp,the calculation method of cracks in code for design of concrete structure in china are appropriated for the specimen beams.展开更多
This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtai...This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtained locally. The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as to make HSC more affordable to a wider variety of applications. The specific constituents were: limestone, dolomite, manufactured sand (limestone), locally available Type I/II cement, silica fume, and recycled concrete aggregate, which was obtained from a local recycler which obtains their product from local demolition. Multiple variables were investigated, such as the aggregate type and size, concrete age (7, 14, and 28-days), the curing regimen, and the water-to-cement ratio (w/c) to optimize a HSC mixture that used local materials. This systematic development revealed that heat curing the specimens in a water bath at 50℃ (122oF) after demolding and then dry curing at 200℃ (392oF) two days before testing with a w/c of 0.28 at 28-days produced the highest compressive strengths. Once an optimum HSC mixture was identified a partial replacement of the coarse aggregate with RCA was completed at 10%, 20%, and 30%. The results showed a loss in compressive strength with an increase in RCA replacement percentages, with the highest strength being approximately 93.0 MPa (13,484 psi) at 28-days for the 10% RCA replacement. The lowest strength obtained from an RCA-HSC mixture was approximately 72.9 (MPa) (10,576 psi) at 7-days. The compressive strengths obtained from the HSC mixtures containing RCA developed in this study are comparable to HSC strengths presented in the literature. Developing this innovative material with local materials and RCA ultimately produces a novel sustainable construction material, reduces the costs, and produces mechanical performance similar to prepackaged, commercially, available construction building materials.展开更多
With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.R...With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.Research on the behavior of HSC reinforced beams with concrete strength more than 60 MPa has been carried out in the past and is still continuing to understand the structural behavior of HSC beams.Along with the many benefits of the high strength concrete,the more brittle behavior is of concern which leads to sudden failure.This paper presents the behavior of reinforced HSC beams in shear with considering the effects of various factors like shear reinforcement ratio,longitudinal reinforcement ratio,l/d ratio(length to depth ratio),etc.Ten numbers Reinforced Concrete Beams of various sizes using concrete mix with three different w/c ratios(0.46,0.26 and 0.21)were cast for shear strength assessment.The beams were tested in simply supported condition over two fixed steel pedestals with load rate of 0.2 mm/minute in displacement control.Mid-point deflection was measured using LVDT.A comparative analysis of theoretical approaches of Euro code,extension of current IS code up to M90 and the experimental data was done to understand the behavior of beams.Shear capacities of beams without any factors of safety were used to assess the actual capacities and then was compared with the experimental capacity obtained.Results of this study can be used in the design of high strength concrete and will be more reliable in Indian continent as the regional materials and exposure conditions were considered.展开更多
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma...Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.展开更多
In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength con...In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength concrete has been also more widely spread than the past. It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility;it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams are used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes.展开更多
A tremendous amount of non-biodegradable waste is created during mining and processing tasks of layered stones like marble.Over time,this has become a global problem because it harms the environment in multiple ways.H...A tremendous amount of non-biodegradable waste is created during mining and processing tasks of layered stones like marble.Over time,this has become a global problem because it harms the environment in multiple ways.Hence,it is necessary to find an alternate way to securely dispose and reuse marble wastes.The construction sector is one of the significant consumers of natural resources for the production of material binders and aggregates.As a result,in recent years,number of researchers have carried out studies in which various kinds of marble waste have been incorporated into concrete with the intention of substituting either cement or aggregates or both.This paper presents the effect of two locally sourced waste marble powders Kadapa marble powder(KMP)and Bethamcherla marble powder(BMP)as partial replacement of cement on mechanical and durability properties of high strength concrete(HSC).Their effect at different replacement levels in HSC is evaluated in compressive,indirect tensile and flexural strengths,elastic modulus,chloride penetration resistance and freeze-thaw durability properties.Micro-structural investigation is also conducted to evaluate their impact on the matrix of HSC containing waste marble powders as additional cementitious materials.Results show that the HSC consisting of KMP and BMP content of 10%and 15%,respectively exhibited higher mechanical and durability properties than the control HSC.Micro-structural investigation also supports this finding.It can be concluded that the use of marble powders as partial replacement of cement does not have any adverse impact on the properties of concrete.The use of KMP and BMP reduces the vast amount of energy required to produce cement,cost and time with reduction in environmental hazards.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
基金Part by a Grant from Sona College of TechnologySalem。
文摘The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and durability properties.The experimental results indicate that replacing copper slag above 50%affects the performance characteristics of the concrete due to its high angularity and lower water absorption characteristics.The strength of concrete with 50%copper slag is improved by 5.6%,whereas the strength of concrete with 100%copper slag is reduced by 2.75%at 28 days.However,increased curing to 90days improves the strength of the former by 7.16%and reduces the latter by only 0.23%.The water absorption,porosity,and rapid chloride penetration of the concrete mixtures with 100%copper slag are increased by 10.44%,13.20%,and 19.56%compared to control concrete.Micro-structural investigations through SEM infer higher replacement of copper results in higher void formation due to its reduced water absorption.
文摘Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree.
文摘Based on experiments, a computer program is developed. The calculated results agree well with the experimental results. The flexural behavior of T shaped high strength concrete members subjected to axial compression and biaxial bending is studied. The main factors affecting the flexural behavior of T shaped high strength concrete members are loading angle, axial compression ratio and reinforcement ratio.
基金the National Natural Science Foundation of China under Grants Nos.51261120377 and 51008173
文摘To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1.
基金Project(51078294)supported by the National Natural Science Foundation of ChinaProject(201101411100025)supported by the Doctoral Fund of Ministry of Education of China
文摘An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.
基金Funded by the Nationd West Communication Construction Technology Project(No.200331881106)
文摘The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable.
基金Project(51121005) supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of ChinaProject(50878035) supported by the National Natural Science Foundation of China
文摘For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-section beams with nine specimens confined by CFRP sheet in the plastic zone and three control beams were conducted up to failure under four-point bending test. The effectiveness of confining CFRP sheet on improving the flexural ductility of tmstrengthened T-section beams was studied. The parameters such as the width and the thickness of CFRP sheet and the type of T-section were analyzed. The experimental results show that ductility and rotation capacity of plastic hinge can be improved by the confinement of CFRP sheet, and the ductility indices increase with the increment of width and thickness of CFRP sheet. A plastic rotation model considering the width of CFRP sheet and the effect of flange of T-section beam is proposed on the basis of the model of BAKER, and the test results show a good agreement with the perdicted results. The relevant construction suggestions for seismic retrofitting design of beam-slabs system in cast-in-place framework structure are presented.
文摘The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.
基金Funded by Natural Science Foundation of China (No. 59908007).
文摘The high strength concrete(HSC)was produced by partially replacingthe normal portland cement with special ground granulatedblast-furnace slag(GGBS)ranging up to 60/100. The effects of the GGBSon the flowabilityand mechanical properties of HSC were studied. Thehydration process and microstructure char- acteristics wereinvestigated by X-ray diffraction(XRD)and scanning microscopy(SEM),respectively. The test results indicate that the GGBS has especiallysupplementary effect on water reducing and excellent property Ofbetter control of lump loss.
文摘Efforts have been made to evaluate the influences of the addition of nanoparticles on the strength,durability and mineralogical changes of high strength concrete(HSC).Therefore,mixes were prepared for conventional concrete mix(CCM)of M80 grade.Further,various mixes were prepared by replacing cementitious materials initially with 1%Nano-CaCO_(3)(NC),2%NC,3%NC in the CCM,and then 1%NC and Nano-SiO_(2)(NS)NS,2%NC and NS,3%NC and NS(NC and NS were in equal proportion)in the CCM.The developed concretes were then evaluated for mechanical properties,permeation characteristics,and mineralogical studies.From the studies,it is found that the concrete at 2%NCS possesses superior mechanical and superior permeation characteristics of all the mixes.A clear variation in the mineralogical structure with the addition of nanoparticles has been observed.
基金This research was funded by Key Projects of National Natural Science Foundation of China(51938009)National Natural Science Foundation of China(51878419)and(51808353).
文摘This paper studies the contribution of CFRP(carbon fiber-reinforced polymer)to the mechanical behavior of high strength concrete-filled square steel tube(HCFST)under biaxial eccentric compression.The new type of composite member is composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes.The finite element analysis was made by ABAQUS on the behavior of high strength concrete filled square steel tubular columns with inner CFRP circular tube subjected to bi-axial eccentric loading.The results obtained from the finite element analysis were verified with the experimental results.In addition,the load-deflection curves in the whole process were calculated and analyzed,which can be divided into three segments:Elastic phase,plastic phase,descending phase.Based on the load-deflection curves,the stresses analysis on the core concrete,CFRP tube and steel tube were conducted.The confinement effect of the CFRP tube improves the ductility of HCFST-CFRP stub column.CFRP ratio and eccentricity affect the ultimate bearing capacity of HCFST stub column.Finally,a calculation formula of ultimate bearing capacity was proposed in the paper.
文摘This paper presents the results of a series of studies on the influence of curing conditions on the strength development of high strength concrete. The 1-, 3-, 7-, 14- and 28-day strengths of four different mixes of Grade 75 similar to 80 concrete, with or without pulverized fuel ash and/or condensed silica fume, under five different curing regimes were investigated. It is revealed that the curing conditions have significant influence on both the short term and long term strength development of the concrete and that concrete mixes of the same grade but containing different mineral admixtures show distinct favour for a curing regime. These results will be helpful for evaluating suitable curing methods for high strength concrete with different mix proportions.
基金Supported by National Natural Science Foundation of China (No. 50878037)
文摘To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50878037,51078059,51178078)
文摘This paper presents the results of four partially prestressed ultra-high strength concrete beams in flexure. The test results are used to evaluate the effects of prestressing tendon depth and area on flexure behavior of specimen beams. The test results indicate that: the cracking load,yielding load,peak load and stiffness postcracking of specimen beams are enhanced by reducing prestressing tendon depth or increasing prestressing tendon area, and the flexural ductility is improved by increasing prestressing tendon depth or reducing prestressing tendon area. The effect of complex reinforcement index considering the strength of the equivalence principle and the reinforcement position on loading levels under serviceability limit state,flexural strength and displacement ductility factor are studied. The influence coefficient of prestressing tendon kpis introduced in the complex reinforcement index. As the complex reinforcement index increases, the loading levels under serviceability limit state and flexural strength increases linearly,and the displacement ductility factor decreases linearly. The test results also verify the conventional beam flexural theory based on the plane cross-section assumption for predicting ultimate flexural strength of partially prestressed ultra-high strength concrete beams is valid. After the introduction of the coefficient kp,the calculation method of cracks in code for design of concrete structure in china are appropriated for the specimen beams.
文摘This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtained locally. The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as to make HSC more affordable to a wider variety of applications. The specific constituents were: limestone, dolomite, manufactured sand (limestone), locally available Type I/II cement, silica fume, and recycled concrete aggregate, which was obtained from a local recycler which obtains their product from local demolition. Multiple variables were investigated, such as the aggregate type and size, concrete age (7, 14, and 28-days), the curing regimen, and the water-to-cement ratio (w/c) to optimize a HSC mixture that used local materials. This systematic development revealed that heat curing the specimens in a water bath at 50℃ (122oF) after demolding and then dry curing at 200℃ (392oF) two days before testing with a w/c of 0.28 at 28-days produced the highest compressive strengths. Once an optimum HSC mixture was identified a partial replacement of the coarse aggregate with RCA was completed at 10%, 20%, and 30%. The results showed a loss in compressive strength with an increase in RCA replacement percentages, with the highest strength being approximately 93.0 MPa (13,484 psi) at 28-days for the 10% RCA replacement. The lowest strength obtained from an RCA-HSC mixture was approximately 72.9 (MPa) (10,576 psi) at 7-days. The compressive strengths obtained from the HSC mixtures containing RCA developed in this study are comparable to HSC strengths presented in the literature. Developing this innovative material with local materials and RCA ultimately produces a novel sustainable construction material, reduces the costs, and produces mechanical performance similar to prepackaged, commercially, available construction building materials.
文摘With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.Research on the behavior of HSC reinforced beams with concrete strength more than 60 MPa has been carried out in the past and is still continuing to understand the structural behavior of HSC beams.Along with the many benefits of the high strength concrete,the more brittle behavior is of concern which leads to sudden failure.This paper presents the behavior of reinforced HSC beams in shear with considering the effects of various factors like shear reinforcement ratio,longitudinal reinforcement ratio,l/d ratio(length to depth ratio),etc.Ten numbers Reinforced Concrete Beams of various sizes using concrete mix with three different w/c ratios(0.46,0.26 and 0.21)were cast for shear strength assessment.The beams were tested in simply supported condition over two fixed steel pedestals with load rate of 0.2 mm/minute in displacement control.Mid-point deflection was measured using LVDT.A comparative analysis of theoretical approaches of Euro code,extension of current IS code up to M90 and the experimental data was done to understand the behavior of beams.Shear capacities of beams without any factors of safety were used to assess the actual capacities and then was compared with the experimental capacity obtained.Results of this study can be used in the design of high strength concrete and will be more reliable in Indian continent as the regional materials and exposure conditions were considered.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.
文摘In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength concrete has been also more widely spread than the past. It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility;it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams are used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes.
文摘A tremendous amount of non-biodegradable waste is created during mining and processing tasks of layered stones like marble.Over time,this has become a global problem because it harms the environment in multiple ways.Hence,it is necessary to find an alternate way to securely dispose and reuse marble wastes.The construction sector is one of the significant consumers of natural resources for the production of material binders and aggregates.As a result,in recent years,number of researchers have carried out studies in which various kinds of marble waste have been incorporated into concrete with the intention of substituting either cement or aggregates or both.This paper presents the effect of two locally sourced waste marble powders Kadapa marble powder(KMP)and Bethamcherla marble powder(BMP)as partial replacement of cement on mechanical and durability properties of high strength concrete(HSC).Their effect at different replacement levels in HSC is evaluated in compressive,indirect tensile and flexural strengths,elastic modulus,chloride penetration resistance and freeze-thaw durability properties.Micro-structural investigation is also conducted to evaluate their impact on the matrix of HSC containing waste marble powders as additional cementitious materials.Results show that the HSC consisting of KMP and BMP content of 10%and 15%,respectively exhibited higher mechanical and durability properties than the control HSC.Micro-structural investigation also supports this finding.It can be concluded that the use of marble powders as partial replacement of cement does not have any adverse impact on the properties of concrete.The use of KMP and BMP reduces the vast amount of energy required to produce cement,cost and time with reduction in environmental hazards.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.