The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and dur...The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and durability properties.The experimental results indicate that replacing copper slag above 50%affects the performance characteristics of the concrete due to its high angularity and lower water absorption characteristics.The strength of concrete with 50%copper slag is improved by 5.6%,whereas the strength of concrete with 100%copper slag is reduced by 2.75%at 28 days.However,increased curing to 90days improves the strength of the former by 7.16%and reduces the latter by only 0.23%.The water absorption,porosity,and rapid chloride penetration of the concrete mixtures with 100%copper slag are increased by 10.44%,13.20%,and 19.56%compared to control concrete.Micro-structural investigations through SEM infer higher replacement of copper results in higher void formation due to its reduced water absorption.展开更多
Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined ...Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree.展开更多
Based on experiments, a computer program is developed. The calculated results agree well with the experimental results. The flexural behavior of T shaped high strength concrete members subjected to axial compression ...Based on experiments, a computer program is developed. The calculated results agree well with the experimental results. The flexural behavior of T shaped high strength concrete members subjected to axial compression and biaxial bending is studied. The main factors affecting the flexural behavior of T shaped high strength concrete members are loading angle, axial compression ratio and reinforcement ratio.展开更多
A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%,...A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this probl...Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated.展开更多
To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column sp...To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1.展开更多
The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack ...The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable.展开更多
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ...An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.展开更多
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma...Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.展开更多
For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-s...For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-section beams with nine specimens confined by CFRP sheet in the plastic zone and three control beams were conducted up to failure under four-point bending test. The effectiveness of confining CFRP sheet on improving the flexural ductility of tmstrengthened T-section beams was studied. The parameters such as the width and the thickness of CFRP sheet and the type of T-section were analyzed. The experimental results show that ductility and rotation capacity of plastic hinge can be improved by the confinement of CFRP sheet, and the ductility indices increase with the increment of width and thickness of CFRP sheet. A plastic rotation model considering the width of CFRP sheet and the effect of flange of T-section beam is proposed on the basis of the model of BAKER, and the test results show a good agreement with the perdicted results. The relevant construction suggestions for seismic retrofitting design of beam-slabs system in cast-in-place framework structure are presented.展开更多
In order to explore the characteristics of ultra-high-strength concrete exposed to high temperature,residual mechanical properties and explosive spalling behavior of ultra-high-strength concrete( UHSC) and high streng...In order to explore the characteristics of ultra-high-strength concrete exposed to high temperature,residual mechanical properties and explosive spalling behavior of ultra-high-strength concrete( UHSC) and high strength concrete( HSC) exposed to high temperatures ranging from 20 ℃ to 800 ℃ were determined. The microstructure of the specimens after exposure to elevated temperature was analyzed by means of scanning electron microscope( SEM) and mercury intrusion porosimetry( MIP). The residual compressive strengths of UHSC and HSC were first increased and then decreased as temperature increased. After exposure to 800 ℃,the compressive strengths of UHSC and HSC were 24. 2 % and 22. 3 % of their original strengths at 20 ℃,respectively. The residual splitting tensile strengths of both UHSC and HSC were consistently decreased with the temperature increasing and were approximately 20% of their original strengths after 800 ℃. However,the residual fracture energies of both concretes tended to ascend even at 600 ℃. The explosive spalling of UHSC was more serious than that of HSC. Moisture content of the specimens governs the explosive spalling of both concretes with a positive correlations,and it is more pronounced in UHSC. These results suggest that UHSC suffers a substantial loss in load-bearing capacity and is highly prone to explosive spalling due to high temperature. The changes in compressive strength are due to the changes in the density and the pore structure of concrete. The probability and severity of explosive spalling of UHSC are much higher than those of HSC due to the higher pore volume in HSC.展开更多
The characteristic of autogenous shrinkage(AS) and its effect on high strength lightweight aggregate concrete(HSLAC) were studied.The experimental results show that the main shrinkage of high strength concrete is ...The characteristic of autogenous shrinkage(AS) and its effect on high strength lightweight aggregate concrete(HSLAC) were studied.The experimental results show that the main shrinkage of high strength concrete is AS and the amount of cement can affect the AS of HSLAC remarkably,At the early stage the AS of HSLAC is lower than that of high strength normal concrete,but it has a large growth at the later stage.The AS of high strength normal concrete becomes stable at 90d age,but HSLAC still has a high AS growth .It is found that adjusting the volume rate of lightweight aggregate,mixing with a proper dosage of fly ash and raising the water saturation degree of lightweight aggregate can markedly reduce the AS rate of HSLAC.展开更多
An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for char...An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement.展开更多
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo...A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction.展开更多
Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is perf...Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is performed on perfobond shear connectors applying ultra high performance concretes with compressive strength higher than 80 MPa to evaluate their shear resistance. The test variables are chosen to be the diameter and number of dowel holes and, the change in the shear strength of the perfobond rib connector is examined with respect to the strength of two types of UHPC: steel fiber-reinforced concrete with compressive strength of 180 MPa and concrete without steel fiber with compressive strength of 80 MPa. The test results reveal that higher concrete strength and larger number of holes increased the shear strength, and that higher increase rate in the shear strength was achieved by the dowel action. The comparison with the predictions obtained by the previous models shows that the experimental results are close to the values given by the model proposed by Oguejiofor and Hosain [1].展开更多
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre...The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.展开更多
The effects of mineral admixtures on fluidity,mechanical and hydrational exothermic behavior were studied.The results show that,double adding ways,i e,fly ash and slag were added at the same time,not only improves th...The effects of mineral admixtures on fluidity,mechanical and hydrational exothermic behavior were studied.The results show that,double adding ways,i e,fly ash and slag were added at the same time,not only improves the fluidity of fresh concrete with low W/B and compensates the lower early compressive strength of harden concrete caused by high adding amount of fly ash, but also greatly reduces the highest temperature rise, exothermic rate and total heat liberation of 3 day of binder pastes in HLPC, and postponed the arrival time of the highest temperature rise. HLPC was prepared and applied to project practice successfully.展开更多
Recently, the effects of high temperature on compressive strength and elastic modulus of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures...Recently, the effects of high temperature on compressive strength and elastic modulus of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 ℃ to 700 ℃ on the material mechanical properties of high-strength concrete of 40, 60 and 80 MPa grade. During the strength test, the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating, and when the target temperature is reached, the specimens are loaded to failure. The tests were conducted at various temperatures (20-700 ℃) for concretes made with W/B ratios of 46%, 32% and 25%, respectively. The results show that the relative values of compressive strength and elastic modulus decrease with increasing compressive strength grade of specimen.展开更多
基金Part by a Grant from Sona College of TechnologySalem。
文摘The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and durability properties.The experimental results indicate that replacing copper slag above 50%affects the performance characteristics of the concrete due to its high angularity and lower water absorption characteristics.The strength of concrete with 50%copper slag is improved by 5.6%,whereas the strength of concrete with 100%copper slag is reduced by 2.75%at 28 days.However,increased curing to 90days improves the strength of the former by 7.16%and reduces the latter by only 0.23%.The water absorption,porosity,and rapid chloride penetration of the concrete mixtures with 100%copper slag are increased by 10.44%,13.20%,and 19.56%compared to control concrete.Micro-structural investigations through SEM infer higher replacement of copper results in higher void formation due to its reduced water absorption.
文摘Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree.
文摘Based on experiments, a computer program is developed. The calculated results agree well with the experimental results. The flexural behavior of T shaped high strength concrete members subjected to axial compression and biaxial bending is studied. The main factors affecting the flexural behavior of T shaped high strength concrete members are loading angle, axial compression ratio and reinforcement ratio.
基金Funded by the National Natural Science Foundation of China(No.51878081).
文摘A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
基金Funded by the Project of National Natural Science Foundation (No. 50508034)Guangxi Key Laboratory for the Advance Materials and New Preparation Technology(No. 063006-5C-13)
文摘Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated.
基金the National Natural Science Foundation of China under Grants Nos.51261120377 and 51008173
文摘To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1.
基金Funded by the Nationd West Communication Construction Technology Project(No.200331881106)
文摘The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable.
基金Project(51078294)supported by the National Natural Science Foundation of ChinaProject(201101411100025)supported by the Doctoral Fund of Ministry of Education of China
文摘An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.
基金Project(51121005) supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of ChinaProject(50878035) supported by the National Natural Science Foundation of China
文摘For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-section beams with nine specimens confined by CFRP sheet in the plastic zone and three control beams were conducted up to failure under four-point bending test. The effectiveness of confining CFRP sheet on improving the flexural ductility of tmstrengthened T-section beams was studied. The parameters such as the width and the thickness of CFRP sheet and the type of T-section were analyzed. The experimental results show that ductility and rotation capacity of plastic hinge can be improved by the confinement of CFRP sheet, and the ductility indices increase with the increment of width and thickness of CFRP sheet. A plastic rotation model considering the width of CFRP sheet and the effect of flange of T-section beam is proposed on the basis of the model of BAKER, and the test results show a good agreement with the perdicted results. The relevant construction suggestions for seismic retrofitting design of beam-slabs system in cast-in-place framework structure are presented.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51278048)the Fundamental Research Funds for the Central Universities of China(Grant No.C11JB00720)
文摘In order to explore the characteristics of ultra-high-strength concrete exposed to high temperature,residual mechanical properties and explosive spalling behavior of ultra-high-strength concrete( UHSC) and high strength concrete( HSC) exposed to high temperatures ranging from 20 ℃ to 800 ℃ were determined. The microstructure of the specimens after exposure to elevated temperature was analyzed by means of scanning electron microscope( SEM) and mercury intrusion porosimetry( MIP). The residual compressive strengths of UHSC and HSC were first increased and then decreased as temperature increased. After exposure to 800 ℃,the compressive strengths of UHSC and HSC were 24. 2 % and 22. 3 % of their original strengths at 20 ℃,respectively. The residual splitting tensile strengths of both UHSC and HSC were consistently decreased with the temperature increasing and were approximately 20% of their original strengths after 800 ℃. However,the residual fracture energies of both concretes tended to ascend even at 600 ℃. The explosive spalling of UHSC was more serious than that of HSC. Moisture content of the specimens governs the explosive spalling of both concretes with a positive correlations,and it is more pronounced in UHSC. These results suggest that UHSC suffers a substantial loss in load-bearing capacity and is highly prone to explosive spalling due to high temperature. The changes in compressive strength are due to the changes in the density and the pore structure of concrete. The probability and severity of explosive spalling of UHSC are much higher than those of HSC due to the higher pore volume in HSC.
文摘The characteristic of autogenous shrinkage(AS) and its effect on high strength lightweight aggregate concrete(HSLAC) were studied.The experimental results show that the main shrinkage of high strength concrete is AS and the amount of cement can affect the AS of HSLAC remarkably,At the early stage the AS of HSLAC is lower than that of high strength normal concrete,but it has a large growth at the later stage.The AS of high strength normal concrete becomes stable at 90d age,but HSLAC still has a high AS growth .It is found that adjusting the volume rate of lightweight aggregate,mixing with a proper dosage of fly ash and raising the water saturation degree of lightweight aggregate can markedly reduce the AS rate of HSLAC.
文摘An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement.
基金Funded by Regulation RevisingItemof China Associationfor En-gineering Construction Standardization (CECS 15 :2000)
文摘A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction.
文摘Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is performed on perfobond shear connectors applying ultra high performance concretes with compressive strength higher than 80 MPa to evaluate their shear resistance. The test variables are chosen to be the diameter and number of dowel holes and, the change in the shear strength of the perfobond rib connector is examined with respect to the strength of two types of UHPC: steel fiber-reinforced concrete with compressive strength of 180 MPa and concrete without steel fiber with compressive strength of 80 MPa. The test results reveal that higher concrete strength and larger number of holes increased the shear strength, and that higher increase rate in the shear strength was achieved by the dowel action. The comparison with the predictions obtained by the previous models shows that the experimental results are close to the values given by the model proposed by Oguejiofor and Hosain [1].
文摘The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .5 9938170 )
文摘The effects of mineral admixtures on fluidity,mechanical and hydrational exothermic behavior were studied.The results show that,double adding ways,i e,fly ash and slag were added at the same time,not only improves the fluidity of fresh concrete with low W/B and compensates the lower early compressive strength of harden concrete caused by high adding amount of fly ash, but also greatly reduces the highest temperature rise, exothermic rate and total heat liberation of 3 day of binder pastes in HLPC, and postponed the arrival time of the highest temperature rise. HLPC was prepared and applied to project practice successfully.
基金The Korea Research Foundation Grant and Brain Korea 21-2th (BK21-2th) funded by the Korean government (MOEHRD,Basic Research Promotion Fund) (KRF-2007-314-D00271)
文摘Recently, the effects of high temperature on compressive strength and elastic modulus of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 ℃ to 700 ℃ on the material mechanical properties of high-strength concrete of 40, 60 and 80 MPa grade. During the strength test, the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating, and when the target temperature is reached, the specimens are loaded to failure. The tests were conducted at various temperatures (20-700 ℃) for concretes made with W/B ratios of 46%, 32% and 25%, respectively. The results show that the relative values of compressive strength and elastic modulus decrease with increasing compressive strength grade of specimen.