The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator a...The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator and a continuous annealing thermomeehanical simulator. The results showed that the microstructure consisted of ferrite and bainite as the main phases with a small amount of retained austenite and martensite islands at cooling rate of 5 and 50 ℃/s, respectively. Fast cooling after continuous annealing affected all constituents of the microstructure. The mechanical properties were improved considerably. Ultimate tensile strength (U-TS) increased and total elongation (TEL) decreased with increasing cooling rate in all specimens. The specimen 1 at a cooling rate of 5 ℃/s exhibited the maximum TEL and UTSxTEL (20% and 27 200 MPa%, respectively) because of the competition between weakening by presence of the retained austenite plus the carbon indigence by carbide precipitation, and strengthening by martensitic islands and precipitation. The maximum UTS and YS (1 450 and 951 MPa, respectively) were obtained for specimen 2 at a cooling rate of 50 ℃/s. This is attributed to the effect of dispersion strengthening of finer martensite islands and the effect of precipitation strengthening of carbide precipitates.展开更多
Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The eff...Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.展开更多
A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed an...A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application.展开更多
The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under differen...The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used.展开更多
The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The resear...The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elongation. Besides, new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.展开更多
The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test...The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test methods.The results show that martensite appears in low carbon steel at 1-5GPa GPa and 950°C for 15 minutes treatment,high pressure heat treatment can improve the hardness and compressive properties of the steel,the yield strength of the steel increases with increasing pressure,and its compressive properties are better than that treated under normal pressure quenching.展开更多
Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, dis...Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.展开更多
The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that d...The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron eontent from 0. 000 5% to 0. 001 6%. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initia tion area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3 (C, B) phase.展开更多
The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental result...The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower.展开更多
High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmissi...High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal.展开更多
For better processing performance of high carbon low alloy steel wire rod,an investigation about the influence of cementite lamellar spacing on wire 'easy drawing' performance is completed.It is pointed out th...For better processing performance of high carbon low alloy steel wire rod,an investigation about the influence of cementite lamellar spacing on wire 'easy drawing' performance is completed.It is pointed out that too thin cementite lamellar spacing(<80 um) reduces the strain hardening level of wire drawing, and reduce the torsion performance of drawn wire at same time.For the wire or wire rod from industrial production,compared with the micro-structure with troostite,the micro-structure with sorbite or sorbite mixed with pearlite is more suitable to the drawing process with high reduction ratio.展开更多
The low cycle fatigue (LCF) behavior of two high strength steels, withnominal chemical compositions (mass fraction, %) of 0.40C-1.5Cr-3Ni-0.4Mo-0.2V (PCrNi3MoV) and0.25C-3Cr-3Mo-0.8Ni-0.1Nb (25Cr3Mo3NiNb), was investi...The low cycle fatigue (LCF) behavior of two high strength steels, withnominal chemical compositions (mass fraction, %) of 0.40C-1.5Cr-3Ni-0.4Mo-0.2V (PCrNi3MoV) and0.25C-3Cr-3Mo-0.8Ni-0.1Nb (25Cr3Mo3NiNb), was investigated by using the smooth bar specimenssubjected to strained-controlled push-pull loading. It is found that both steels show cyclicsoftening, but 25Cr3Mo3NiNb steel has a lower tendency to cyclic softening. 25Cr3Mo3NiNb steel hashigher fatigue ductility, and its transition fatigue life is almost three times that of PCrNi3MoV.25Cr3Mo3NiNb steel also shows higher LCF life either at a given total strain amplitude above 0.5% orat any given plastic strain amplitude, despite its lower monotonic tensile strength than that ofPCrNi3MoV. It also means that 25Cr3Mo3NiNb steel can endure higher total strain amplitude andplastic strain amplitude at a given number of reversals to failure within 10~4. 25Cr3Mo3NiNb steelis expected to be a good gun steel with high LCF properties because only several thousand firingsare required for gun barrel in most cases.展开更多
A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results...A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results of three-point bend specimens as well as introducing an Arrhenius formula. It is shown that the results obtained by the given formula are in good agreement with the experimental ones in the thermal activation region. The present method is also valuable to describe the relationship between dynamic fracture toughness and temperature and loading rate of other high strength low alloy steels.展开更多
The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper....The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfeid the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.展开更多
The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic micr...The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process.展开更多
In this paper, the carburizing kinetics of low-carbon steel at high-temperature and short-term in liquid cast-iron were studied by metallographic microscope, chemical analysis and so on, and the microstructure of carb...In this paper, the carburizing kinetics of low-carbon steel at high-temperature and short-term in liquid cast-iron were studied by metallographic microscope, chemical analysis and so on, and the microstructure of carburized layer was also analyzed. The results show that the carburizing rate of low-carbon steel at high-temperature and short-term is so fast, and the microstructure of carburized layer possess higher carbon content, and cementite, pearlite and ferrite exist in carburized layer structure simultaneously. Besides, the kinetic equations of permeating layer forming have been presented, and the carburizing mechanism was preliminary discussed also.展开更多
In this paper,a Fe-based Mn-Ni–Cr–Mo high strength low alloy(HSLA)steel was prepared by using Vacuum melting,following by hot rolling with 78%deformation and various heat treatment processes.Microstructure were char...In this paper,a Fe-based Mn-Ni–Cr–Mo high strength low alloy(HSLA)steel was prepared by using Vacuum melting,following by hot rolling with 78%deformation and various heat treatment processes.Microstructure were characterized by optical microscope(OM),scanning electron microscope(SEM)equipped with energy dispersive spectrometer.Tensile tests were performed.After direct quenching(Q)from 860℃,the samples were subjected to secondary quenching(L)at different intercritical temperatures within the two-phase region and various tempering temperatures(T).Results show that QLT treatment increases elongation and decreases yield ratio compared with conventional quenching and tempering process(QT).The optimum QLT heat treatment parameter in terms of temperature are determined as Q:860℃,L:700℃,and T:600℃,resulting in the better combined properties with yield strength of 756MPa,tensile strength of 820MPa,tensile elongation of 16.76%and yield ratio of 0.923.展开更多
With the rapid development of low alloy steel strength level,more problems caused by welding are exposed day by day.Recently,the efforts have been paid to improve or enchance the low toughness of heated affected zone ...With the rapid development of low alloy steel strength level,more problems caused by welding are exposed day by day.Recently,the efforts have been paid to improve or enchance the low toughness of heated affected zone and welded metal which can enchance the comprehensive mechanical properties that is the core scientific problems of its safe operation by researching crack initiation and crack propragation attracted a rapidly growing interest.This article focuses on the research status and progress of welding technology and joint microstructure and properties of advanced steel materials.The influence of shielding gas on the microstructure evolution of deposited metals,the effect heat input of welded joint performance,interpass temperature and alloy elements on welded joints microstructure and M-A constituent evolution and properties are reviewed in detail.And for the heat affected zone,the grain size and microstructure as well as the shape,size,and distribution of M-A constituent,have a significant impact on the impact toughness.This paper is an attempt to review the effect of different welding process parameters on welded metal and HAZ of HSLA steels.展开更多
基金Sponsored by National Natural Science Foundation of China(No.51004037)Shenyang City Application Basic Research Project(No.F13-316-1-15)
文摘The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator and a continuous annealing thermomeehanical simulator. The results showed that the microstructure consisted of ferrite and bainite as the main phases with a small amount of retained austenite and martensite islands at cooling rate of 5 and 50 ℃/s, respectively. Fast cooling after continuous annealing affected all constituents of the microstructure. The mechanical properties were improved considerably. Ultimate tensile strength (U-TS) increased and total elongation (TEL) decreased with increasing cooling rate in all specimens. The specimen 1 at a cooling rate of 5 ℃/s exhibited the maximum TEL and UTSxTEL (20% and 27 200 MPa%, respectively) because of the competition between weakening by presence of the retained austenite plus the carbon indigence by carbide precipitation, and strengthening by martensitic islands and precipitation. The maximum UTS and YS (1 450 and 951 MPa, respectively) were obtained for specimen 2 at a cooling rate of 50 ℃/s. This is attributed to the effect of dispersion strengthening of finer martensite islands and the effect of precipitation strengthening of carbide precipitates.
文摘Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.
基金financially supported by the National Key R&D Program of China(No.2017YFB1103200)the Independent Innovation Research Fund Project of Huazhong University of Science and Technology(No.2018KFYXMPT002)。
文摘A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application.
文摘The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used.
文摘The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elongation. Besides, new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.
文摘The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test methods.The results show that martensite appears in low carbon steel at 1-5GPa GPa and 950°C for 15 minutes treatment,high pressure heat treatment can improve the hardness and compressive properties of the steel,the yield strength of the steel increases with increasing pressure,and its compressive properties are better than that treated under normal pressure quenching.
基金The Director,Naval Material Research Laboratory(NMRL),Ambernath for financial support through CARS project No:G8/15250/2011 dated29.02.2012
文摘Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.
基金Item Sponsored by National Key Fundamental Research and Development Programme of China (2004CB619104)
文摘The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron eontent from 0. 000 5% to 0. 001 6%. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initia tion area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3 (C, B) phase.
基金financially supported by the National Science Fund for Distinguished Young Scholars (No. 51325401)the International Thermonuclear Experimental Reactor (ITER) Program Special Project (No. 2014GB125006)+1 种基金the Major State Basic Research Development Program of China (No. 2014CB046805)the National Natural Science Foundation of China (No. 51474156)
文摘The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower.
文摘High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal.
文摘For better processing performance of high carbon low alloy steel wire rod,an investigation about the influence of cementite lamellar spacing on wire 'easy drawing' performance is completed.It is pointed out that too thin cementite lamellar spacing(<80 um) reduces the strain hardening level of wire drawing, and reduce the torsion performance of drawn wire at same time.For the wire or wire rod from industrial production,compared with the micro-structure with troostite,the micro-structure with sorbite or sorbite mixed with pearlite is more suitable to the drawing process with high reduction ratio.
文摘The low cycle fatigue (LCF) behavior of two high strength steels, withnominal chemical compositions (mass fraction, %) of 0.40C-1.5Cr-3Ni-0.4Mo-0.2V (PCrNi3MoV) and0.25C-3Cr-3Mo-0.8Ni-0.1Nb (25Cr3Mo3NiNb), was investigated by using the smooth bar specimenssubjected to strained-controlled push-pull loading. It is found that both steels show cyclicsoftening, but 25Cr3Mo3NiNb steel has a lower tendency to cyclic softening. 25Cr3Mo3NiNb steel hashigher fatigue ductility, and its transition fatigue life is almost three times that of PCrNi3MoV.25Cr3Mo3NiNb steel also shows higher LCF life either at a given total strain amplitude above 0.5% orat any given plastic strain amplitude, despite its lower monotonic tensile strength than that ofPCrNi3MoV. It also means that 25Cr3Mo3NiNb steel can endure higher total strain amplitude andplastic strain amplitude at a given number of reversals to failure within 10~4. 25Cr3Mo3NiNb steelis expected to be a good gun steel with high LCF properties because only several thousand firingsare required for gun barrel in most cases.
文摘A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results of three-point bend specimens as well as introducing an Arrhenius formula. It is shown that the results obtained by the given formula are in good agreement with the experimental ones in the thermal activation region. The present method is also valuable to describe the relationship between dynamic fracture toughness and temperature and loading rate of other high strength low alloy steels.
文摘The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfeid the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.
文摘The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process.
文摘In this paper, the carburizing kinetics of low-carbon steel at high-temperature and short-term in liquid cast-iron were studied by metallographic microscope, chemical analysis and so on, and the microstructure of carburized layer was also analyzed. The results show that the carburizing rate of low-carbon steel at high-temperature and short-term is so fast, and the microstructure of carburized layer possess higher carbon content, and cementite, pearlite and ferrite exist in carburized layer structure simultaneously. Besides, the kinetic equations of permeating layer forming have been presented, and the carburizing mechanism was preliminary discussed also.
基金This work was supported by the Project funded by China Postdoctoral Science Foundation,the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-002A1)Domain Foundation of Equipment Advance Research of 13th Five-year Plan(No.61409220124).
文摘In this paper,a Fe-based Mn-Ni–Cr–Mo high strength low alloy(HSLA)steel was prepared by using Vacuum melting,following by hot rolling with 78%deformation and various heat treatment processes.Microstructure were characterized by optical microscope(OM),scanning electron microscope(SEM)equipped with energy dispersive spectrometer.Tensile tests were performed.After direct quenching(Q)from 860℃,the samples were subjected to secondary quenching(L)at different intercritical temperatures within the two-phase region and various tempering temperatures(T).Results show that QLT treatment increases elongation and decreases yield ratio compared with conventional quenching and tempering process(QT).The optimum QLT heat treatment parameter in terms of temperature are determined as Q:860℃,L:700℃,and T:600℃,resulting in the better combined properties with yield strength of 756MPa,tensile strength of 820MPa,tensile elongation of 16.76%and yield ratio of 0.923.
文摘With the rapid development of low alloy steel strength level,more problems caused by welding are exposed day by day.Recently,the efforts have been paid to improve or enchance the low toughness of heated affected zone and welded metal which can enchance the comprehensive mechanical properties that is the core scientific problems of its safe operation by researching crack initiation and crack propragation attracted a rapidly growing interest.This article focuses on the research status and progress of welding technology and joint microstructure and properties of advanced steel materials.The influence of shielding gas on the microstructure evolution of deposited metals,the effect heat input of welded joint performance,interpass temperature and alloy elements on welded joints microstructure and M-A constituent evolution and properties are reviewed in detail.And for the heat affected zone,the grain size and microstructure as well as the shape,size,and distribution of M-A constituent,have a significant impact on the impact toughness.This paper is an attempt to review the effect of different welding process parameters on welded metal and HAZ of HSLA steels.