Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined ...Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree.展开更多
In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional l...In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional laminates are carried out,and the stress distributions,the failure modes,and the damage contours are analyzed. The analysis shows that the main reason for the failure of the single-lap joint is that the stress concentration of the ply adjacent to the adhesive layer is serious owing to the modulus difference,and the stress cannot be effectively transmitted along the thickness direction of the laminate. When the tensile stress of the ply exceeds its ultimate strength in the loading process,the surface fiber will fail. Compared with the single-lap joint,the bevel-lap joint optimizes the stress transfer path along the thickness direction,allows each layer of the laminate to share the load,avoids the stress concentration of the surface layer,and improves the bearing capacity of the bevel-lap joint. The improved bearing capacity of the bevellap joint is twice as much as that of the single-lap joint. The research in this paper provides a new idea for the subsequent study of mechanical properties of adhesively bonded composite materials.展开更多
Many measures, such as water injection, acid fracturing, thermal recovery, have been taken in the oilfield development. These can easily induce brittle fracture of set cement. Most of all, there are greater potential ...Many measures, such as water injection, acid fracturing, thermal recovery, have been taken in the oilfield development. These can easily induce brittle fracture of set cement. Most of all, there are greater potential for fractures in set cement in slim holes. Therefore, it is necessary to improve the toughness of the cement mantle. Results obtained from experiments show that carbon fiber, with a concentration of 0.12%-0.19% in cement and a length of 700 to 1,400μm, plays an important role in improving cement quality. Addition of carbon fiber can improve the bending strength of set cement by up to 30%. At the same time, the increase in fiber concentration can lower the elastic modulus and increase the Poisson's ratio of set cement. Thin-section analysis shows that fiber can effectively prevent the propagation of fractures and enhance the plasticity of the matrix and the ability to prevent fracture.展开更多
Some noticeable effects of process conditions, such as coagulation bath, solvent extraction, drying shrinkage and ultra-drawing, on the structure and properties of gel-spun PVA fibers are studied and discussed. High s...Some noticeable effects of process conditions, such as coagulation bath, solvent extraction, drying shrinkage and ultra-drawing, on the structure and properties of gel-spun PVA fibers are studied and discussed. High strength and high modulus PVA fibers with tensile strength of 11.3 cN / dtex and initial modulus of 430 cN / dtex have been obtained.展开更多
文摘Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree.
文摘In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional laminates are carried out,and the stress distributions,the failure modes,and the damage contours are analyzed. The analysis shows that the main reason for the failure of the single-lap joint is that the stress concentration of the ply adjacent to the adhesive layer is serious owing to the modulus difference,and the stress cannot be effectively transmitted along the thickness direction of the laminate. When the tensile stress of the ply exceeds its ultimate strength in the loading process,the surface fiber will fail. Compared with the single-lap joint,the bevel-lap joint optimizes the stress transfer path along the thickness direction,allows each layer of the laminate to share the load,avoids the stress concentration of the surface layer,and improves the bearing capacity of the bevel-lap joint. The improved bearing capacity of the bevellap joint is twice as much as that of the single-lap joint. The research in this paper provides a new idea for the subsequent study of mechanical properties of adhesively bonded composite materials.
文摘Many measures, such as water injection, acid fracturing, thermal recovery, have been taken in the oilfield development. These can easily induce brittle fracture of set cement. Most of all, there are greater potential for fractures in set cement in slim holes. Therefore, it is necessary to improve the toughness of the cement mantle. Results obtained from experiments show that carbon fiber, with a concentration of 0.12%-0.19% in cement and a length of 700 to 1,400μm, plays an important role in improving cement quality. Addition of carbon fiber can improve the bending strength of set cement by up to 30%. At the same time, the increase in fiber concentration can lower the elastic modulus and increase the Poisson's ratio of set cement. Thin-section analysis shows that fiber can effectively prevent the propagation of fractures and enhance the plasticity of the matrix and the ability to prevent fracture.
文摘Some noticeable effects of process conditions, such as coagulation bath, solvent extraction, drying shrinkage and ultra-drawing, on the structure and properties of gel-spun PVA fibers are studied and discussed. High strength and high modulus PVA fibers with tensile strength of 11.3 cN / dtex and initial modulus of 430 cN / dtex have been obtained.