期刊文献+
共找到20,177篇文章
< 1 2 250 >
每页显示 20 50 100
Anisotropic strength,deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression 被引量:1
1
作者 Hongyuan Zhou Zaobao Liu +2 位作者 Fengjiao Liu Jianfu Shao Guoliang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期860-876,共17页
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ... The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects. 展开更多
关键词 Anisotropic strength and deformation True triaxial compression Thermal mechanical coupling Deep rock mechanics high temperature rock mechanics
下载PDF
High-strength,multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure 被引量:2
2
作者 Feiyue Yang Shuang Zhao +4 位作者 Guobing Chen Kunfeng Li Zhifang Fei Paul Mummery Zichun Yang 《Advanced Powder Materials》 2024年第1期102-113,共12页
The quest for lightweight and functional materials poses stringent requirements on mechanical performance of porous materials.However,the contradiction between high strength and elevated porosity of porous materials s... The quest for lightweight and functional materials poses stringent requirements on mechanical performance of porous materials.However,the contradiction between high strength and elevated porosity of porous materials severely limits their application scenarios in emerging fields.Herein,high-strength multifunctional mullite-based porous ceramic monoliths were fabricated utilizing waste fly ash hollow microspheres(FAHMs)by the protein gelling technique.Owing to their unique shell-pore structure inspired by shell-protected biomaterials,the monoliths with porosity of 54.69%–70.02% exhibited a high compressive strength(32.3–42.9 MPa)which was 2–5 times that of mullite-based porous ceramics with similar density reported elsewhere.Moreover,their pore structure and properties could be tuned by regulation of the particle size and content of the FAHMs,and the resultant monoliths demonstrated superior integrated performances for multifunctional applications,such as broadband sound insulation,efficient thermal insulation,and high-temperature fire resistance(>1300℃).On this basis,mullite-based porous ceramic lattices(porosity 68.28%–84.79%)with a hierarchical porous structure were successfully assembled by direct ink writing(DIW),which exhibited significantly higher compressive strength(3.02–10.77 MPa)than most other ceramic lattices with comparable densities.This unique shell-pore structure can be extended to other porous materials,and our strategy paves a new way for cost-effective,scalable and green production of multifunctional materials with well-defined microstructure. 展开更多
关键词 Mullite-based porous ceramics Hollow microspheres Protein gelling technique high compressive strength Multifunctional integration Hierarchical porous structures
下载PDF
Ultrahigh strength and improved electrical conductivity in an aging strengthened copper alloy processed by combination of equal channel angular pressing and thermomechanical treatment
3
作者 WANG Xu LI Zhou +1 位作者 MENG Xiang-peng XIAO Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1823-1837,共15页
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper... In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample. 展开更多
关键词 Cu-Ti alloy equal channel angular pressing ROLLING aging treatment high strength
下载PDF
Development of a High Early Strength Non-fuorine and Non-alkaline Flash Setting Admixture and Flash Mechanism
4
作者 SUN Guowen YANG Xinyu +2 位作者 WANG Fengjuan WANG Jinshuo LIU Zhiyong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1518-1527,共10页
To solve the problems of high rebound rate and strength reversion of shotcrete,a non-fluorine and non-alkaline liquid flash setting admixture(FSN)with low rebound and high early strength was synthesized under 60-65℃w... To solve the problems of high rebound rate and strength reversion of shotcrete,a non-fluorine and non-alkaline liquid flash setting admixture(FSN)with low rebound and high early strength was synthesized under 60-65℃water bath environment through orthogonal test design and taking setting time and compressive strength as indicators.The experimental results show that the optimum mass ratio of FSN is aluminum sulfate:diethanolamine:triethanolamine:pseudo-boehmite:lithium carbonate:water=57%:8%:0.05%:2%:2%:31%.When FSN is added with 7%of the mass of portland cement,the cement paste can be initially set in 3 min and finally set in 5 min.The compressive strength of mortar is 1.2 MPa at 6 h,18.0 MPa at 1 d,and more than 100%at 28 days;The microscopic analysis shows that the rapid release of Li^(+),NH^(4+),and CO_(3)^(2-)ions by FSN in the paste solution effectively shortens the induction period of high C_(3)S content in Portland cement,directly forms early coagulation AFt crystals in FSN and CH dominated by Al_(2)(SO_(4))_(3),and forms a large number of C-S-H gels in the later stage,so that the cement can quickly coagulate and harden,and the strength in the later stage is not retracted. 展开更多
关键词 SHOTCRETE flash setting admixture aluminum sulfate high early strength flash mechanism
下载PDF
Effect of casting process on the inner-wall band segregation of high-strength antisulfur pipes
5
作者 LUO Ming ZHANG Zhonghua 《Baosteel Technical Research》 CAS 2024年第1期27-36,共10页
Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic s... Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic stirring,end electromagnetic stirring,casting speed and soft reduction)for the smelting of high-strength antisulfur pipes.The microstructures of continuous-casting billets and hot-rolled or tempered pipes were analyzed using a metallographic microscope and scanning electron microscope.The mechanism and evolution law regarding the inner-wall band segregation of high-strength antisulfur pipes were studied,and the influence of different casting processes was explored. 展开更多
关键词 high strength antisulfur pipe casting process spot segregation band segregation
下载PDF
Effect of B_(2)O_(3) enrichment on microstructural inhomogeneity of high strength steel weldments
6
作者 Joydeep Roy Pritam Das 《China Welding》 CAS 2024年第3期25-32,共8页
The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to eval... The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to evaluate the joint strength due to the enrichment of boron.To change the chemical composition of the weld metal,boron trioxide powder was blended with virgin flux in various proportions(2.5%−12.5%),which led to an increase in boron weight percentage in the range of 0−0.0065.The results show that weld metals(WM)optical micrographs depict the various types of ferrites,pearlites and secondary phases like martensite-austenite(M-A).Acicular ferrite content was influenced by the boron trioxide addition.Heat affected zone(HAZ)micrographs were not showing appreciable changes with oxide enrichment.Hardness and toughness of weld metals showed the mixed trend with B_(2)O_(3) enrichment whereas,small reduction in ultimate tensile strength(UTS)and yield strength(YS)was observed. 展开更多
关键词 high strength steel B_(2)O_(3) flux microstructure HARDNESS TOUGHNESS ultimate tensile strength
下载PDF
Product Development of High Strength and Toughness Spring Flat Steel
7
作者 Jianxin Wang Chunhui Zhang 《Frontiers of Metallurgical Industry》 2024年第1期15-18,共4页
With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are desi... With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are designed to meet the requirements of high strength and high toughness of spring flat steel,through the test,the product surface quality and internal quality all meet the national standards,the performance indicators to meet user requirements. 展开更多
关键词 spring flat steel mechanical properties high strength high toughness
下载PDF
High strength magnesium alloy with α-Mg and W-phase processed by hot extrusion 被引量:9
8
作者 杨文朋 郭学锋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2358-2364,共7页
Fine-grained Mg-6Zn-4Y alloy was prepared by an ingot metallurgy process with hot extrusion at 300 ℃.The microstructure was studied by XRD,OM,SEM and TEM,and the tensile properties were tested at room temperature.The... Fine-grained Mg-6Zn-4Y alloy was prepared by an ingot metallurgy process with hot extrusion at 300 ℃.The microstructure was studied by XRD,OM,SEM and TEM,and the tensile properties were tested at room temperature.The results show that the alloy is composed of α-Mg and W-phase.The microstructure of the as-extruded alloy has a bimodal grain size distribution.The fine grains with the mean size of 1.2 μm are formed by dynamic recrystallization.The coarse grains(about 23% in area fraction) are unrecrystallized regions which are elongated along extrusion direction.The engineering stress—strain curve shows a pronounced yield point.The ultimate tensile strength,yield strength,and elongation are(371±10) MPa,(350±5) MPa and(7±2)%,respectively.The high strengths are attributed to the fine-grained matrix structure enhanced by W-phase particles,nano-scaled precipitates,and strong basal plane texture. 展开更多
关键词 Mg-6Zn-4Y alloy EXTRUSION W-phase high strength yield phenomenon
下载PDF
Study on High Strength Concrete Confined by Continuous Carbon Fiber Sheet 被引量:2
9
作者 赵彤 谢剑 +1 位作者 刘明国 河村博之 《Transactions of Tianjin University》 EI CAS 2002年第1期12-15,共4页
Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined ... Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree. 展开更多
关键词 high strength concrete carbon fiber sheet strength DEFORMATION
下载PDF
Research and Development of Cemented Carbide Multifacet Drill for Drilling High Strength Steel 被引量:1
10
作者 庞思勤 于启勋 姬广振 《Journal of Beijing Institute of Technology》 EI CAS 1999年第1期72-76,共5页
Aim To research on a solid cemented carbide multi facet drill for drilling high strength steel. Methods Assimilating some features of multi facet drill edge structures, through systematic drilling experiments, a n... Aim To research on a solid cemented carbide multi facet drill for drilling high strength steel. Methods Assimilating some features of multi facet drill edge structures, through systematic drilling experiments, a new type of solid cemented carbide drill was developed and the drill geometry was optimized. Results With the new type drill,the drilling force decreases by 10%-20%, the drilling productivity (drilled holes per hour) increases by 2-3 times, and the drilling precision and surface finish increase by one level. Conclusion The new type drill possesses excellent drilling performance. 展开更多
关键词 DRILLING multi facet drill cemented carbide high strength steel
下载PDF
RESEARCH ON T SHAPED HIGH STRENGTH CONCRETE MEMBERS SUBJECTED TO AXIAL COMPRESSION AND BIAXIAL BENDING
11
作者 赵彤 戴自强 翁维素 《Transactions of Tianjin University》 EI CAS 1998年第1期68-71,共4页
Based on experiments, a computer program is developed. The calculated results agree well with the experimental results. The flexural behavior of T shaped high strength concrete members subjected to axial compression ... Based on experiments, a computer program is developed. The calculated results agree well with the experimental results. The flexural behavior of T shaped high strength concrete members subjected to axial compression and biaxial bending is studied. The main factors affecting the flexural behavior of T shaped high strength concrete members are loading angle, axial compression ratio and reinforcement ratio. 展开更多
关键词 high strength concrete irregularly shaped member flexural behavior
下载PDF
Strength regularity and failure criterion of plain HSHPC under biaxial compression after exposure to high temperatures
12
作者 何振军 宋玉普 《Journal of Southeast University(English Edition)》 EI CAS 2008年第2期206-211,共6页
Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1... Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed. 展开更多
关键词 high-strength high-performance concrete (HSHPC) high temperatures stress ratio uniaxial and biaxial compressive strength failure criterion
下载PDF
Application of Lanthanum in High Strength and High Conductivity Copper Alloys 被引量:24
13
作者 周世杰 赵秉钧 +1 位作者 赵桢 金鑫 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期385-388,共4页
China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed... China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed the non-argent Lanthanum-tellurium-copper alloy as a substitute for industry argent-copper. In our research, we were able to successfully apply rare earth lanthanum to copper alloy. The defects as porosity, inclusion, etc. originating from nonvacuum melting processing were controlled. Fine grain was obtained. Meanwhile, the comprehensive properties of the copper alloy, such as strength, conductivity and thermal conductivity were improved. The research results in increasing conductivity and thermal conductivity by 5% and 15%, respectively, while the tensile strength is increased by 6% higher than Ag-Cu alloy. The anti-electric corrosion property is good, and there is no argent-cadmium steam population originating from the electric arc effect. The addition of lanthanum further reduces the content of oxygen and hydrogen. The optimum quantity of the addition of RE lanthanum in the copper alloy is 0.010% - 0.020% . 展开更多
关键词 LANTHANUM copper alloy high strength high conductivity rare earths
下载PDF
Application of Hot Forming High Strength Steel Parts on Car Body in Side Impact 被引量:19
14
作者 SUN Hongtu HU Ping +3 位作者 MA Ning SHEN Guozhe LIU Bo ZHOU Dinglu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期252-256,共5页
Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. Howeve... Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. However, the lightweight structures must show the improved capability for structural rigidity and crash energy absorption. Advanced high strength steels are attractive materials to achieve higher strength for energy absorption and reduce weight of vehicles. Currently, many research works focus on component level axial crash testing and simulation of high strength steels. However, the effects of high strength steel parts to the impact of auto body are not considered. The goal of this research is to study the application of hot forming high strength steel(HFHSS) in order to evaluate the potential using in vehicle design for lightweight and passive safety. The performance of HFHSS is investigated by using both experimental and analytical techniques. In particular, the focus is on HFHSS which may have potential to enhance the passive safety for lightweight auto body. Automotive components made of HFHSS and general high strength steel(GHSS) are considered in this study. The material characterization of HFHSS is carried out through material experiments. The finite element method, in conjunction with the validated model is used to simulate the side impact of a car with GHSS and HFHSS parts according to China New Car Assessment Programme(C-NCAP) crash test. The deformation and acceleration characteristics of car body are analyzed and the injuries of an occupant are calculated. The results from the simulation analyses of HFHSS are compared with those of GHSS. The comparison indicates that the HFHSS parts on car body enhance the passive safety for the lightweight car body in side impact. Parts of HFHSS reduce weight of vehicle through thinner thickness offering higher strength of parts. Passive safety of lightweight car body is improved through reduction of crash deformation on car body by the application of HFHSS parts. The experiments and simulation are conducted to the HFHSS parts on auto body. The results demonstrate the feasibility of the application of HFHSS materials on automotive components for improved capability of passive safety and lightweight. 展开更多
关键词 hot forming high strength steel LIGHTWEIGHT side impact car body
下载PDF
Tensile properties of high strength cast Mg alloys at room temperature:A review 被引量:14
15
作者 Fu Penghuai Peng Liming +2 位作者 Jiang Haiyan Ding Wenjiang Zhai Chunquan 《China Foundry》 SCIE CAS 2014年第4期277-286,共10页
As most Mg alloy products are now produced by a casting process,the development of high strength cast Mg alloys can promote their further applications and has already become one of the hot research areas of Mg alloys.... As most Mg alloy products are now produced by a casting process,the development of high strength cast Mg alloys can promote their further applications and has already become one of the hot research areas of Mg alloys.The present paper reviews the strengthening mechanisms,tensile properties and modification results of commercial high strength cast Mg alloys;as well as the development of Mg-Gd,Mg-Nd and Mg-Sn based alloys.It concludes that precipitation strengthening is the most important strengthening mechanism in high strength cast Mg alloys,which contributes more than 60%of yield strength in solution&peak-aged(T6)cast Mg alloys.For the yield strength,the alloys follow the sequence of Mg-Gd(Y)-Ag>Mg-Gd(Y)-Zn>Mg-Gd-Y/Sm/Nd>Mg-Y-Nd(WE series)>ZK61>Mg-Nd>AZ91>Mg-Sn.Mg-Gd(Y)-Ag based alloys are the strongest cast Mg alloys at present,followed by Mg-Gd(Y)-Zn based alloys.The high yield strengths of Mg-Gd(Y)-Ag and Mg-Gd(Y)-Zn cast alloys are due to the co-precipitation of basal and prismatic meta-stable phases. 展开更多
关键词 research development high strength Mg cast alloy PRECIPITATE
下载PDF
Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels 被引量:13
16
作者 Jin-yan Zhong Min Sun +2 位作者 Da-bo Liu Xiao-gang Li Tian-qi Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第3期282-289,共8页
The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steel... The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steels remain martensite structures and have anodic dissolution characteristic with an increase of chromium content. There is no typical passive region on the polarization curves of an ultra high strength stainless steel, AerMet 100 steel, and 300M steel. However, chromium improves the corrosion resistance of the stainless steel remarkably. It has the slowest corrosion rate in the salt spray test, one order of magnitude less than that of AerMet 100 and 300M steels. With the increase of chromium content, the polarization resistance becomes larger, the corrosion potential shifts towards the positive direction with a value of 545 mV, and the corrosion current density decreases in electrochemical measures in 3.5wt% NaCl solutions. Because of the higher content of chromium, the ultra high strength stainless steel has a better corrosion resistance than AerMet 100 and 300M steels. 展开更多
关键词 ultra high strength steel corrosion rate CHROMIUM electrochemical behavior
下载PDF
Effect of microstructure on the low temperature toughness of high strength pipeline steels 被引量:10
17
作者 Yan-ping Zeng Peng-yu Zhu Ke Tong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第3期254-261,共8页
Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The eff... Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries. 展开更多
关键词 high strength pipe steels microstrucmre low temperature TOUGHNESS influencing factors
下载PDF
Recent developments in high-strength Mg-RE-based alloys:Focusing on Mg-Gd and Mg-Y systems 被引量:84
18
作者 Jinghuai Zhang Shujuan Liu +2 位作者 Ruizhi Wu Legan Hou Milin Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第3期277-291,共15页
Higher strength is always the goal pursued by researchers for the structural materials,especially for the lightweight magnesium(Mg)alloys which generally have relatively low strength at present.From this aspect,the pr... Higher strength is always the goal pursued by researchers for the structural materials,especially for the lightweight magnesium(Mg)alloys which generally have relatively low strength at present.From this aspect,the present paper reviews the recent reports of a kind of Mg alloys,i.e.Mg-RE(RE:rare earths,mainly Gd or Y)casting and wrought alloys,which have been able to achieve high strength compared with common or commercial Mg alloys,from the viewpoint and content of the alloy system,alloying constitution,preparation process,tensile strength and each of the main strengthening mechanisms.This review of recent research and developments in high-strength Mg-RE alloys is beneficial for the further design of Mg alloys with higher strength as well as excellent comprehensive performance. 展开更多
关键词 Mg alloys high strength Rare earths(RE) strengthening mechanism
下载PDF
Microstructure investigation of a new type super high strength aluminum alloy at different heat-treated conditions 被引量:10
19
作者 ZENGYu YINZhimin +1 位作者 ZHUYuanzhi CUIJianzhong 《Rare Metals》 SCIE EI CAS CSCD 2004年第4期377-384,共8页
As a structural material with low density and high strength, super-highstrength aluminum alloys have a future for wide application. However, its poor stress corrosionresistance (SCC) restricts further development. In ... As a structural material with low density and high strength, super-highstrength aluminum alloys have a future for wide application. However, its poor stress corrosionresistance (SCC) restricts further development. In present, retrogression and re-ageing (RRA)treatment, which can improve both strength and SCCR of 7XXX series alloy, is a best method to solvethis problem. The effect of RRA treatment on the microstructure evolution of a new type lowfrequency electric-magnetic casting Al-9.OZn-2.45Mg-2.2Cu-0.15Zr alloy was investigated using DSCand TEM technologies. The results show that the typical microstructure of the alloy at T6 conditionis characterized by both fine eta' and GP zone homogeneously distributed in the matrix andcontinuous r) particles occurred on the grain-boundary. After RRA treatment, the matrixprecipitations are mainly fine and dispersed eta' and eta phases, being coarser and more stable thanthat from T6 temper. While, the grain-boundary microstructure is very close to that resulting fromT73 temper. High retrogression temperature and long retrogression time leads to a more stablemicrostructure after re-ageing. 展开更多
关键词 MICROSTRUCTURE super high strength Al-Zn-Mg-Cu alloy heat treatedcondition
下载PDF
The Frost-resisting Durability of High Strength Self-Compacting Pervious Concrete in Deicing Salt Environment 被引量:11
20
作者 封金财 ZONG Ningwen +3 位作者 ZHU Pinghua 刘惠 YAO Lan GENG Jiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期167-175,共9页
A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%,... A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment. 展开更多
关键词 high strength SELF-COMPACTING pervious concrete top-bottom interconnected pores heavy loading road frost-resisting DURABILITY DEICING salt ENVIRONMENT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部